
An Empirical Study on Correlation between
Coverage and Robustness for Deep Neural Networks

Yizhen Dong∗, Peixin Zhang†, Jingyi Wang‡, Shuang Liu∗, Jun Sun§, Jianye Hao∗‖,
Xinyu Wang†, Li Wang∗, Jinsong Dong‡, and Ting Dai¶
∗College of Intelligence and Computing, Tianjin University

†College of Computer Science and Technology, Zhejiang University
‡National University of Singapore
§Singapore Management University
¶Huawei International Pte.Ltd.
‖Noah’s Ark Lab, Huawei

Abstract—Deep neural networks (DNN) are increasingly ap-
plied in safety-critical systems, e.g., for face recognition, au-
tonomous car control and malware detection. It is also shown
that DNNs are subject to attacks such as adversarial perturbation
and thus must be properly tested. Many coverage criteria for
DNN since have been proposed, inspired by the success of
code coverage criteria for software programs. The expectation
is that if a DNN is well tested (and retrained) according to such
coverage criteria, it is more likely to be robust. In this work, we
conduct an empirical study to evaluate the relationship between
coverage, robustness and attack/defense metrics for DNN. Our
study is the largest to date and systematically done based on
100 DNN models and 25 metrics. One of our findings is that
there is limited correlation between coverage and robustness,
i.e., improving coverage does not help improve the robustness.
Our dataset and implementation have been made available to
serve as a benchmark for future studies on testing DNN.

I. INTRODUCTION

Recent years have seen rapid development on deep learning
techniques as well as applications in a variety of domains like
computer vision [1], [2] and natural language processing [3].
There is a growing trend to apply deep learning for solving
safety-critical tasks, such as face recognition [4], self-driving
cars [5] and malware detection [6]. Unfortunately, deep neural
networks (DNN) are shown to be vulnerable to attacks and
lack of robustness. For instance, they are easily subject to
adversarial perturbation [7], [8], i.e., a DNN makes a wrong
decision given a carefully crafted small perturbation on the
original input. This suggests that DNN, just like software
systems, must be properly analyzed and tested before they
are applied in safety-critical systems.

The software engineering community welcomed the chal-
lenge and opportunity. Multiple software testing approaches,
i.e., differential testing [9], mutation testing [10], [11] and
concolic testing [12], have been adapted into the context of
testing DNN. Inspired by the noticeable success of code cov-
erage criteria in testing traditional software systems, multiple
coverage criteria1, e.g., neuron coverage [9] and its extensions
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DeepGauge [13], MC/DC [14], and Surprise Adequacy [15],
have been proposed. Coverage criteria quantitatively measures
how well a DNN is tested and offers guidelines on how to
create new test cases. The underlying assumption is that a
DNN which is better tested, i.e., with higher coverage, is more
likely to be robust.

This assumption however is often not examined or only
evaluated with limited DNN models and structures, making
it unclear whether the results generalize. Furthermore, how a
test suite improves the quality of a DNN is different from that
of a software system. A software system is improved by fixing
bugs revealed by a test suite. A DNN is typically improved
by retraining with the test suite. While existing studies show
that retraining often improves a DNN’s accuracy to some
extent [9], [12], it is not clear whether there is correlation
between the coverage of the test suite and the improvement,
i.e., does a set of inputs with higher coverage imply better
improvement (on DNN robustness)?

Inspired by the work in [16], we conduct an empirical study
to evaluate whether coverage is correlated with robustness of
DNN and additional metrics which are associated with the
quality of DNN [17]. In particular, we would like to answer
the following research questions.
• Are there correlations between testing coverage criteria

and the robustness of DNN?
• Are there correlations among different coverage criteria

themselves?
• Are there correlations between the improvement of cov-

erage criteria and the improvement in terms of robustness
after the DNN is retrained?

• Are there metrics that are strongly correlated to the
robustness of DNN or the robustness improvement after
retraining?

Based on the answers to the above questions, we aim to
provide practical guidelines for developing testing methods
which contribute towards improving the robustness of DNN.

Conducting such an empirical study is highly non-trivial.
First, we need a large set of real-world DNN for the study.
However, training realistic DNN often takes significant amount



of time and resource. For instance, it takes 15 GPU hours
to train a ResNet-101 model. Our study trained 100 state-
of-the-art DNN models2 with a variety of architectures with
two popular datasets, i.e., MNIST [18] and CIFAR10 [19].
Obtaining these models took a total of 150 GPU hours.

Second, we need to obtain adversarial samples by attacking
the trained original models. We adopt 3 state-of-the-art attack
methods, i.e., FGSM [8], JSMA [20] and C&W [7], to attack
the original models, in order to obtain different adversarial
sample sets. Some of the adversarial attack methods, e.g.,
JSMA and C&W, are known to be time-consuming. It takes
us a total of 1, 810 GPU hours to obtain adversarial samples
for all the original models with the 3 attack methods.

Last but not least, we need a systematic and automatic
way of evaluating the coverage, robustness, and other as-
sociated metrics, which is not always straightforward. For
instance, there are multiple definitions of robustness in the
literature [21], [22], some of which are complicated and
expensive to compute (e.g., it took 12 GPU hours to compute a
CLEVER score [22] for GoogLeNet-22.). In this work, we de-
velop a self-contained toolkit called DRTest (Deep Robustness
Testing), which calculates a comprehensive set of metrics on
DNN, including 1) 8 testing coverage criteria proposed for
DNN, 2) 2 robustness metrics for DNN, and 3) a set of 15
attack and defense metrics for DNN. A total of 4, 150 GPU
hours are spent on computing these metrics.

Our empirical study is conducted as follows. For each
dataset, we first train 25 diverse seed models (with state-
of-the-art architectures), attack each seed model with differ-
ent attacking methods to generate adversarial samples (with
varying attack parameters), augment the training dataset with
the generated adversarial samples, and retrain the model.
We apply DRTest to calculate a range of metrics for every
model. Afterwards, we apply a standard correlation analysis
algorithm, the Kendall’s rank correlation coefficient [23], to
analyze the correlations between the metrics.

In summary, we make the following contributions.
• We conducted an empirical study to systematically inves-

tigate the correlation between coverage, robustness and
related metrics for DNN. Based on the study results, we
discuss potential research directions on DNN testing.

• We implemented a self-contained and extensible toolkit
which calculates a large set of metrics, which can be used
to quantitatively measure different aspects of DNN.

• We publish online our models, adversarial samples as
well as DRTest, which can be used as a benchmark for
future proposals on methods for DNN testing.

We organize the remainder of the paper as follows. Sec-
tion II introduces the background knowledge of this work.
Section III presents our research methodology. Section IV
shows details on our implementations. Section V reports our
findings on the research questions. We present related works
in Section VI and conclude in Section VII.

225 seed models trained with original dataset and 75 models retrained using
original dataset augmented with adversarial samples.

II. PRELIMINARIES

In this section, we briefly review preliminaries related to
this work, which include Deep Neural Networks (DNN),
adversarial attacks on DNN, testing methods for DNN, and
robustness of DNN.

A. Deep Neural Networks

In this work, we focus on DNN classifiers D(X) : X → Y ,
where X is a set of inputs and Y is a finite set of labels. Given
an input x ∈ X , a DNN classifier transforms information layer
by layer and outputs a label y ∈ Y for the input x. We try to
cover a wide range of DNN architectures in our work including
LeNet [24], VGG [2], GoogLeNet [25] and ResNet [1].

B. Adversarial Attack

Since Szegedy et al. discovered that DNNs are intrinsically
vulnerable to adversarial samples (i.e., sample inputs which are
generated with the intention to trick a DNN into wrong deci-
sions) [26], many attacking approaches have been developed
to craft adversarial samples. We adopt 3 popular attacking
algorithms i.e., FGSM [8], JSMA [20] and C&W [7] in our
work to generate adversarial examples for further study.

C. Testing Deep Neural Networks

A variety of traditional software testing methods like dif-
ferential testing [27], [28], concolic testing [29] have been
adapted to the context of testing DNN [9], [12] to find
adversarial samples (in hope of revealing bugs in DNN). In the
following, we review some recently proposed coverage criteria
for DNN. Neuron coverage [9] is the first coverage criteria
proposed for testing DNN, which quantifies the percentage of
activated neurons by at least one test case in the test suite.
Later, Ma et al. proposed DeepGauge [13], which extends
neuron coverage with coverage criteria which are defined
based on the activation values from both neuron-level and
layer-level. Based on the idea that a good test suite should
be ‘surprising’ compared to the training set, Kim et al. [15]
defined two measures on how surprising a testing input is to
the training set, readers are referred to [15] for details.

D. Robustness of Deep Neural Networks

Given the existence of adversarial samples, adversarial
robustness becomes an important desired property of a DNN
which measures its resilience against adversarial perturbations.
Following the definitions proposed by Katz et al. [30], ad-
versarial robustness can be categorized into local adversarial
robustness and global adversarial robustness.

Definition II.1. (Local Adversarial Robustness) Given a sam-
ple input x, a DNN D and a perturbation threshold ε,
D is ε−local robust iff for any sample input x′ such that
||x − x′||p ≤ δ, we have D(x) = D(x′), where || · ||p is the
p-norm to measure the distance between two sample inputs.

Definition II.2. (Global Adversarial Robustness) For any
sample inputs x and x′, a DNN D and two thresholds δ, ε,



D is (δ, ε)−robust iff for any ||x − x′||p ≤ δ, we have
|D(x)−D(x′)| ≤ ε.

Local robustness measures the robustness on a specific
input, global robustness measures the robustness on all inputs.

Verifying whether a DNN satisfies local or global robustness
is an active research area [30], [31], [32] and existing methods
do not scale to state-of-the-art DNNs (especially for global
robustness). Thus, multiple metrics have been proposed in
order to empirically evaluate the adversarial robustness of a
DNN [22], [21], [33], [34]. We introduce two widely used
adversarial robustness metrics adopted in this work as follow.
Global Lipschitz Constant Lipschitz Constant [21] measures
the sensitivity of a model to adversarial samples and the
Lipschitz constant is only related to the parameters of f . In
our context, the function is in the form of a DNN. Its Lipschitz
constant can be calculated recursively layer-by-layer from the
output layer all the way to the input layer, taking consideration
of short-cuts in ResNet and inception module in GoogLeNet.
For the calculation details of Lipschitz Constant for the fully
connected layer or the convolution and aggregation layers,
please refer to [21] and [35] respectively.
CLEVER Score Another robustness metric we adopt is
the CLEVER score (Cross-Lipschitz Extreme Value for nEt-
work Robustness) [22], which is a recently proposed attack-
independent robustness score for large scale networks. Readers
are referred to [22] for details.

III. METHODOLOGY

The overall workflow of our experiment is shown in Fig-
ure 1. We follow a common DNN testing process (e.g., by [9],
[13]), as shown at the top of the figure, whilst extracting a
variety of metrics (as shown in the middle of the figure) which
are used for correlation analysis (as shown at the bottom). We
start with training a model from a training set using state-
of-the-art training methods. Afterwards, various adversarial
attacks [8], [20], [7] are applied to generate new test cases.
The last step is to augment the training set with the new test
cases and obtain a retrained model.

We collect four different groups of metrics to characterize
different components of the process, i.e., (1) a set of testing
coverage metrics of models, (2) a set of attack metrics of
different kinds of adversarial attacks on the original models,
(3) a set of robustness metrics of both the original models and
the retrained models, and (4) a set of defense metrics which
measure the differences between the retrained model and the
original model. We repeat the above process for the 25 seed
models, obtain in total 100 models, calculate the corresponding
metrics and then conduct correlation analysis on all these
metrics. In the following, we illustrate the challenges and our
design choices of each part in detail.
Adversarial Attacks We adopt three state-of-the-art DNN
attack methods i.e., FGSM [8], CW [7] and JSMA [20] to
generate adversarial samples, these generated adversarial sam-
ples are combined with the original datasets as new (training
and testing) datasets for model retraining

TABLE I: Summary of metrics

Metric Type Metric Name Description

Testing

NC Neuron Coverage [9]
KNC K-multisection Neuron Coverage [13]
SNAC Strong Neuron Activation Coverage [13]
NBC Neuron Boundary Coverage [13]
TKNC Top-k Dominant Neuron Coverage [13]
TKNP Top-k Dominant Neuron Patterns Coverage [13]
LSA/DSA Surprise adequacy to training set [15]

Robustness Lipschitz constant The global Lipschitz constant [21]
CL1/CL2/CLi Clever score with L1/L2/L∞ norm [22]

Attack

MR Misclassification Ratio [17]
ACAC Average Confidence of Adversarial Class [17]
ACTC Average Confidence of True Class [17]
ALDp Average Lp Distortion [17]
ASS Average Structural Similarity [36]
PSD Perturbation Sensitivity Distance [37]
NTE Noise Tolerance Estimation [37]
RGB Robustness to Gaussian Blur [17]
RIC Robustness to Image Compressionr [17]
CC Computation Cost [17]

Defense

CAV Classification Accuracy Variance [17]
CRR/CSR Classification Rectify/Sacrifice Ratio [17]
CCV Classification Confidence Variance [17]
COS Classification Output Stability [17]

Model Retraining For each original model, we obtain three
sets of adversarial samples using attack methods. We combine
original training set with one set of the adversarial samples for
retraining one model. As a result, we obtain 3 retrained models
for each original model, one for each attacking method. We
follow the standard partition of 6 : 1 for training and testing
on the MNIST dataset and 5 : 1 for the CIFAR10 dataset.

Metric Calculation As our objective is to investigate the
correlations between coverage, robustness and other metrics
associated with DNN, we conduct a thorough survey on
existing metrics and collected 25 metrics in total which are
summarized in Table I. Note that the attack metrics measure to
what extent the attacks are successful, imperceptible, whereas
the defense metrics measure mainly on how the retrained mod-
els preserve the accuracy of the original model. For brevity, we
refer the readers to the original papers for details. We calculate
values of all metrics based on their original definitions and use
default parameters according to their original papers.

Correlation Analysis We conduct correlation analysis, a sta-
tistical technique that shows whether and how strongly pairs
of variables are correlated, on the metrics. We are particularly
interested to observe which metrics are correlated to the ro-
bustness of a DNN model. In this work, we adopt a commonly
used correlation coefficients, Kendall’s τ rank correlation co-
efficient [23], which is a rank based correlation that measures
monotonic relationship between two variables, to measure the
correlations between different metrics. Note that compared to
alternative methods like Pearson product-moment correlation
coefficient [38], Kendall’s τ rank correlation coefficient does
not require that the dataset follows a normal distribution or the
correlation is linear. We calculate the correlations of different
metrics for the two dataset separately, in order to avoid the
potential impact due to the training data.

IV. IMPLEMENTATION AND CONFIGURATIONS

Our system is implemented based on the TensorFlow frame-
work [39] and the architecture is shown in Figure 2. There
are 4 layers, i.e., the data layer, the algorithm layer, the
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Fig. 2: The architecture of our framework
measurement layer and the analysis layer. Our implementation
is designed to be extensible, i.e., each layer can be extended
with new models and algorithms with little impact on the
other layers. Our implementation, including all the data and
algorithms, is open source on GitHub3.

The data layer maintains all data used in our study which
interacts with all other layers. We cover a wide range
of different deep learning model structures, including 3
LeNet family models (LeNet-1,4,5 [24]), 4 VGG family
models (VGG-11,13,16,19 [2]), 4 ResNet family models
(ResNet-18,34,50,101 [1]) and 3 GoogLeNet family models
(GoogLeNet-12,16,22 [25]). We adopt two popular publicly-
available datasets, i.e., MNIST [18] and CIFAR10 [19] to train
DNN models in our work, due to the limitation of space, we
will not introduce them here.

3https://github.com/ICECCS2020/DRtest

The algorithm layer contains a set of algorithms for attacking
DNN as well as algorithms for defending DNN through re-
training. For each trained model, we use three attack methods
(e.g., FGSM, CW and JSMA) to generate adversarial samples.
The principle of choosing parameters for each attack is to
balance the imperceptibility and success rate of generating ad-
versarial samples. For MNIST, we adopt the same parameters
from cleverhans [40] for all three attacks. For CIFAR10, we
slightly changed the parameters of FGSM and CW in order to
obtain better imperceptibility.

To further avoid bias introduced by hyper-parameters, we
run each attack method on the original dataset for 3 times with
different hyper-parameter configurations. Then we combine
the successful adversarial samples generated from 3 runs of at-
tacks as the adversarial sample set for model retraining. Reader
can find the details of the hyper-parameter configurations for
each attack method on our GitHub repository.

During training and retraining, we adopt a learning rate of
0.001, a batch size of 128 for all models in the two datasets.
For MNIST, a test accuracy above 98% is accepted in both
training and retraining. For CIFAR10, a test accuracy above
80% is accepted during training process and a test accuracy
above 85% is required for retraining which is widely accepted.

The measurement layer contains all implementation as shown
in Table I. We calculate four robustness values, i.e., Global
Lipschitz Constant (Lipz) and the CLEVER score (CL1, CL
and CLi) for each model. Note that LeNet is not feasible for
CIFAR10. In our experiment, since calculate CLEVER score
is extremely time-consuming for GoogLeNet, we reduce the
number of images to 50 and sampling parameter Nb = 50, as
it is reported that 50 or 100 samples are usually sufficient to
obtain a reasonably accurate robustness estimation [22]. We
calculate the coverage criteria of different DNN models with
the same test suite (i.e., the original test suite of MINIST or
CIFAR10) and obtain 14∗4 and 11∗4 values of each coverage
criteria on MNIST and CIFAR10, respectively.

Defense Metrics are calculated for all the defense enhanced
models, i.e., models after adversarial training, according to
their original definitions [17]. For each dataset, We obtain



TABLE II: Time for different steps in the experiment

dataset model family generate AE train & retrain metric calc

MNIST

LeNet <0.5 <0.5 <0.5
VGG 160 6 420

ResNet 240 12 1200
GoogLeNet 120 25 300

CIFAR10
VGG 540 12 550

ResNet 450 45 1350
GoogLeNet 300 50 330

14∗3 and 11 ∗ 3 values for each defense metric on MINIST
and CIFAR10, respectively. Attack Metrics are calculated for
the generated adversarial examples of each attack method, all
parameters of attack metrics are set based on their original
definitions [17]. We obtain 14∗3 and 11 ∗ 3 values for each
attack metric on MINIST and CIFAR10, respectively.

We additionally calculate a set of ∆-metrics, which are
denoted as Metric-diff. For instance, Lipz-diff is the Lipschitz
Constant of the retrained model minus that of the original
model. We obtain 14∗3 and 11 ∗ 3 ∆-robustness for each
robustness metric on MINIST and CIFAR10. Similarly, we
calculate ∆-coverage metrics by subtracting the coverage
achieved by the augmented test set (i.e., the original test set
plus the adversarial samples) from that of the original test
set. We obtain 14∗3 and 11 ∗ 3 ∆-coverage values for each
coverage metric on MINIST and CIFAR10.

The analysis layer implements the correlation analysis algo-
rithm [23]. We first plot the data to observe the trend and then
decide on the correlation analysis method to use. By observing
the data plot, we found that the data does not show a linear
trend. Therefore, we choose the Kendall’s τ rank correlation
coefficient [23], which does not assume that the data follows
a normal distribution or the variables have a linear correlation.

All experiments were conducted using four GPU servers,
readers can find configurations of our servers on our GitHub
repository. In total, the experiment took more than 6, 100 GPU
hours to finish. Table II shows the time spent on different steps
of our experiments, the unit is 1 GPU hour.

V. FINDINGS

A. Research Questions

RQ1: Are there any correlations between existing test
coverage criteria and the robustness of the DNN models?

To answer the question, we conduct correlation analysis on
the coverage metrics and the robustness metrics of all models
on the original test set. The results are shown in Figure 3. The
number and the color represent the strength of the correlation.
The correlation value is a number between −1 and 1. Positive
number (and blue color) indicates positively correlated and
negative number (and red color) indicates negative correlated.
The larger the absolute number is, the stronger the correlation
is. The darker the color is, the stronger the correlation is. We
measure the p-value of the sample data set we have and regard
p-value greater than 0.05 as insignificant. An “X” mark means
that we cannot make a decision because p-value is larger
than 0.05 (i.e., insignificant) and a question mark “?” means
that there are no valid results since the standard variation of

the data is 0. According to the definition of correlation in
Guildford scale [41], an absolute value of less than 0.4 means
that the (positive or negative) correlation is low; an absolute
value of 0.4 - 0.7 means that the correlation is moderate; and
otherwise the correlation is high or very high (i.e., 0.7-0.9 or
above 0.9, respectively).

We have the following observations based on Fig. 3. First,
there is no significant or negative correlation between coverage
and robustness metrics. In particularly, neural coverage is neg-
atively correlated (i.e., with a value between −0.16 and −0.29)
with the CLEVER score and is not significantly correlated with
Lipschitz constant for both MNIST and CIFAR10. Moreover,
KNC, TKNC and LSA also show negative correlations with
CLEVER score on CIFAR10. It suggests that a DNN is less
robust if the test set has a larger neuron coverage (although
the strength of the correlation is weak), which is unexpected.
Second, there is no significant correlation between any of
the other coverage and any of the robustness metrics on the
MNIST dataset. For the CIFAR10 dataset, positive correlation
is only observed between SNAC and the CLEVER score with
low strength. This result suggests that a DNN model which
achieves high coverage is not necessary robust and vice versa.

We further investigate the correlation among all test cover-
age criteria themselves. It can be observed from Fig. 3 that
NC, KNC, TKNC, LSA and DSA are positively correlated
with each other. NBC and SNAC are correlated with each
other with medium or high strength, whereas they have no (or
weak negative) correlation with the other metrics. The results
are consistent with observations reported in [13] and [15]
which propose these coverage. This suggests that despite that
different coverage criteria are defined differently, they are in
general correlated (except for the boundary coverage).

We have the following answer to RQ1.

Different coverage criteria are correlated with each other.
There is limited correlation between the coverage criteria
and the robustness metrics.

RQ2: Does retraining with new test cases which improves
coverage criteria improve the robustness of a DNN model?

To answer this question, we conduct correlation analysis
on the difference on coverage criteria and the difference on
robustness metrics before and after retraining. The results
are shown in Fig. 4. We observe that there is no correlation
between the difference on any coverage criteria and the differ-
ence on any robustness metrics, except that there is negative
correlation between TKNC-diff and the CLEVER scores for
all the CIFAR10 models. This result casts a shadow over
existing testing approaches, as the existing testing approaches
are designed to generate test cases for high coverage, with
the hope that such test cases can be used to improve the
adversarial robustness of the DNN models.

We thus have the following answer to RQ2.



(a) MNIST (b) CIFAR10

Fig. 3: Test coverage vs. robustness metrics

(a) MNIST (b) CIFAR10

Fig. 4: Defense Metrics vs. Coverage Criteria Differences vs. Robustness Differences

Retraining with new test cases which improve the cov-
erage criteria does not necessarily improve the model
robustness.

RQ3: Are there metrics that are strongly correlated to the
improvement of model robustness?

The above results show that existing test coverage criteria
have limited correlations with the robustness of DNN models
and testing methods based on improving the coverage do not
improve the robustness of DNN models. The question is then:
are there metrics which are correlated to the improvement of
the model robustness? To answer the question, we system-
atically conduct correlation analysis between all metrics (or
the metrics’s difference before and after retraining) and the
improvement of the model robustness.

The correlations between the defense metrics and the im-
provement of robustness are shown in Fig. 4. There are positive
correlations between the difference of the CLEVER scores
and all the defense metrics on CIFAR10. In particular, the
correlation is of medium level for CRR and CAV. CRR and
CAV measure how much the defense-enhanced model pre-
serves the functionality of the original model [17]. Intuitively,
this indicates that a defense method leads to more robustness
improvement if the original model is better preserved by the
defense-enhanced model. Furthermore, given the huge cost
on computing robustness metrics, such positive correlations
potentially provide a lightweight way of estimating on the
effectiveness of a model enhancement method.

We additionally analyze the correlation between the attack
metrics and the improvement of coverage criteria. We have



(a) MNIST (b) CIFAR10

Fig. 5: Coverage Criterion Difference vs. Robustness Difference vs. Attack Metric

the following observations from the results shown in Fig. 5.
There are correlations between the differences of TKNP and
KNC and the attack metrics. Furthermore, NTE is positively
correlated with KNC-diff, NBC-diff and SNAC-diff. RGB
is positively correlated with NC-diff, NBC-diff and SNAC-
diff. Intuitively, NTE and RGB measure the robustness of
adversarial samples, which implies that more robust adversar-
ial samples contribute more to the improvement of coverage
metrics. Lastly, there is no correlation between the robustness
differences and the attack metrics for the CIFAR10 dataset.
For the MINIST dataset, we observe negative correlations
between the CLEVER score differences with ACAC, ALD2,
RIC and NTE, and positive correlations with ASS and ACTC.
These observations indicate that more confident, perceptible
and robust adversarial samples contribute more to improving
the coverage criteria.

We have the answer to RQ3.

Some defense metrics are positively correlated to the
improvement of model robustness.

RQ4: Are the correlation results consistent across different
datasets, model families and correlation analysis methods?

This question examines whether the correlation results are
universal or rather may vary cross different datasets, model
families or correlation analysis methods. To answer this
question, we systematically conduct the different correlation
analysis using data obtained from different datasets and model
families. For the sake of space, we omit the details and refer
the readers to the online repository for details.

While the correlation between testing coverage and ro-
bustness on MNIST and CIFAR10 are mostly consistent, we
do observe some difference of the results across the two
datasets. For instance, the attack metrics (except ALDinf)

show correlation with CL-diff on MNIST but not on CIFAR10.
The defense metrics show strong correlation with robustness
and robustness-diff on CIFRA10 but not the case on MNIST.

There are also inconsistent correlation results across dif-
ferent model families. The correlation results on the MNIST,
LeNet and VGG families are consistent, which is expected
since they have similar model structures. However, it is
surprise that models in the GoogLeNet family often show
opposite correlation results to those of the MNIST, LeNet and
VGG families, especially for correlation between the attack
metrics and the improvement of the model robustness. This can
be explained as GoogLeNet has a rather different architecture
from MNIST, LeNet and VGG (GoogLeNet tends to have
more neurons in a layer instead of having more layers).

The above-mentioned inconsistency suggests that the cor-
relation may depend on the dataset and, more noticeably, the
model architecture, which further complicates the picture.

Lastly, we apply different correlation analysis algorithms
(including Pearson product moment correlation [38] and
Spearman’s rank-order correlation [42]) to observe whether
the results are consistent. Overall, although the results are not
identical, the differences are not significant and the results
(e.g., whether it is positively or negatively correlated or
whether it is strongly or weakly correlated) remain consis-
tent. We choose to present the results of Kendall correlation
coefficients in this work as it requires the least assumption on
the underlying data. The results of other correlation analysis
algorithms are presented in our online repository.

We have our answer to RQ4.

The correlation results are consistent across different cor-
relation analysis algorithms but may vary across different
datasets or model families.



B. Explanation

In the following, we aim to interpret and ‘explain’ the
results. These explanations must, however, be taken a grain
of salt as they should be properly examined in the future.

First, the reason that existing coverage criteria are not
correlated with robustness may simply be due to the fact
these coverage criteria are too weak to differentiate robust and
not-robust DNN models. It has been shown that high neuron
coverage could be easily achieved with a small number of
samples [14], and similar conclusions are given by Odena
et al. [43] for coverages proposed in DeepGauge, such as
neuron boundary coverage. This finding is confirmed by an-
other recent research work [44], which reports that adversarial
examples are pervasively distributed in the space divided by
coverage criteria. The work [44] also suggests that using
structural coverage to measure the neural network robustness
can be questionable.

Second, our results suggest that retraining with the test case
does not necessarily improve robustness. For software systems,
a test case which reveals a bug naturally leads to bug fixing,
which “definitely” improves the ‘robustness’ of the system.
This is not certain for DNN models. because the retrained
model could be rather different from the original model, i.e.,
it is like a new model, due to how such models are trained
(i.e., through optimization techniques which embody a lot of
non-determinism and carry little theoretical guarantee).

Third, we consider it to be intuitive that defense metrics are
correlated with robustness as these defense metrics are indeed
less formal ways of measuring robustness (i.e., in term of how
well a DNN model defends adversarial attacks).

As for the answer to RQ4, we take the consistency between
different correlation analysis algorithms positively as it shows
that our results are not the result of certain ‘biased’ correlation
analysis algorithm. The second part of the answer may suggest
that a testing method may have to be tailored according to
different DNN architectures.

C. Discussion

The results discussed so far are mostly negative, i.e., only
several defense metrics are correlated with the improvement
of model robustness and existing testing methods designed
based on coverage have limited effectiveness on improving
the robustness of the DNN models. The results question the
usefulness of coverage criteria proposed for DNN models.
Indeed, a well tested (and improved by retraining) DNN
through existing testing methods might produce a new model
which has higher empirical accuracy on the testing set. How-
ever, the new model is not necessarily more robust than
the original model against adversarial perturbations. In fact,
a recent finding shows that DNN model robustness maybe
at odds with accuracy since robust classifiers are learning
fundamentally different feature representations than standard
classifiers [45]. For DNN models to be deployed in safety-
critical applications, we believe that robustness is an as (if not
more) important property as accuracy. The real question thus
remains: how should we test DNN models and make use of

the testing results so that the robustness of the DNN models
is improved? Or are there ways to improve the robustness of
the DNN models in general?.

To this question, we do not have a clear answer and thus it
remains an open question to us. It is possible that there could
be other coverage criteria which are correlated with the model
robustness or the associated testing method can help improve
the model robustness. It is however important that no matter
what coverage is proposed, it must be thoroughly analyzed to
show its effect on model robustness.

Our view is that finding adversarial samples should not
be the end of DNN testing. Rather, testing DNN models
should be designed in consideration of the model enhancement
methods, i.e., a testing method should produce test cases which
are useful according to the model enhancement methods. For
instance, given the positive correlation between robustness and
the defense metrics, we might want to generate test cases
which could improve defense metrics such as CAV and CCV.

D. Threats to validity

First, there may be threats to validity due to the selected
datasets and model structures. In this work, we regard each
DNN model as a program of the same functionality and
calculate different metrics on these models. We assume the
metrics are valid across different model structures and conduct
correlation analysis on the obtained metrics. However, some
metrics are not applicable to certain model structures (e.g.,
MC/DC is not applicable to ResNet and GoogLeNet). Besides,
the results may be biased to these specific datasets and model
structures even though we are adopting the most popular
datasets and state-of-the-art models.

Second, there may be threats to validity due to the limited
size of data. While we are working on more datasets, model
structures, etc., we could not significantly increase the scale
due to the huge cost (more than 6, 100 GPU hours) of the
empirical study. For more statistical significant results, more
data points are helpful (or even necessary). We call upon
the open source community to jointly upscale our study. To
make sure that our correlation analysis results are valid, we
only report the results beyond a certain significant level by
measuring its p-value [46] in this work.

Third, it is shown in [47] that the adversarial samples
in floating point numbers generated by FGSM, CW and
JSMA may become benign after transforming back into integer
images, which is called the Discretization Problem. Thus this
problem may affect the results reported in the paper.

Forth, the evaluation of DNN model robustness in general is
still an open and challenging research problem [48]. Although
we are adopting the most popular robustness metrics, there
might still be threat to validity to what extent these metrics
can actually reflect the robustness of the models.

VI. RELATED WORK

In this section, we review related works, with a focus on
recent progress on 1) testing approaches which propose dif-
ferent testing criteria for DNN models, 2) different robustness



metrics to evaluate the quality of the DNN models, and 3)
state-of-the-art adversarial attacks and defense methods.

Testing of deep learning models Several recent papers
proposed different coverage criteria for evaluating the effec-
tiveness of a test set, along with different methods to generate
test cases to improve the coverage criteria. For instance,
DeepXplore [9] proposed the first testing criterion for DNN
models, i.e., Neuron Coverage (NC), which calculates the
percentage of activated neurons (w.r.t. an activation function)
among all neurons. Later, DeepGauge [13] extended the idea
and proposed a serial of more fine-grained multi-granularity
testing criteria from both neuron level and layer level. Inspired
by the MC/DC test criteria from traditional software testing,
Sun et al. proposed four test criteria based on syntactic
connections between neurons in adjacent layers and a concolic
testing strategy to systematically improve MC/DC coverage
of DNN models [12]. More recently, two surprise adequacy
criteria [15] are proposed to measure the level of ‘surprise’ of
a new test case to the training set. Our work implemented and
reviewed most of the above-mentioned coverage criteria for a
comprehensive evaluation. Note that some are omitted as they
are extremely costly to compute.

Robustness of deep learning models In the machine learning
and the formal verification community, multiple metrics are
used to measure the robustness of DNN models. The Lipschitz
constant was proved to be useful as a metric for Feed-forward
Neural Networks by Xu, H. [21]. Segedy et al. [26] leveraged
the product of Lipschitz constants for each layer as a measure
of the DNN robustness and proposed Parseval Networks [35]
to achieve improved robustness by maintaining a small Lips-
chitz constant at every hidden layer. Adversarial manipulation,
which looks at the required distortion of adversarial samples
is another direction. Matthias et al. intended to gave a formal
guarantee on the robustness of a classifier by obtaining a
robustness lower bound using a local Lipschitz continuous
condition [32]. Recently, Weng et al. [22] extended their work
and proposed a robustness metric called CLEVER score which
is calculated using extreme value theory. Our work adopted
one latest criteria from each direction.

Attack and Defense for deep learning models There is
a large body work on adversarial attack and defense in
recent years, which we are only able to cover the most
relevant ones. In particular, we adopted three state-of-the-
art attacks to generate adversarial samples, i.e., a gradient-
based approach (the FGSM method [8]), a saliency map-based
approach (JSMA [20]), and an optimization-based approach
(C&W attack [7]). On the defense side, multiple attempts
are available to obtain a relatively robust model at training
phase or detect adversarial samples at runtime. For instance,
adversarial training tries to include adversarial samples into
consideration [49]. Another relevant direction is robust training
which tries to train a robust DNN model by considering all the
possible perturbation at training phase [50]. Besides, mutation
testing is adopted to find adversarial samples at runtime [11].
Essentially, testing is complementary to these defense works.

VII. CONCLUSION

In this work, we conducted a systematic and quantitative
empirical study on 100 state-of-the-art DNN models to in-
vestigate the relevance and effectiveness of recently proposed
testing criteria and approaches for deep neural networks. Our
study is based on a self-contained toolkit which implements all
the testing coverage criteria, two robustness metrics and a large
set of measurable metrics during the adversarial attack and
defense pipeline. Our results obtained from correlation anal-
ysis on all these metrics from different perspectives suggest
that existing testing coverage criteria have limited correlation
with the robustness (or the improvement of the robustness)
of DNN models. Furthermore, we provide potential directions
to improve DNN testing in general by correlation analysis of
robustness metrics and other kinds of metrics.

While our results are mostly negative, we believe it is
important that future proposed testing criteria and methods
undergo similar evaluation so as to provide evidence of their
relevance. Our models, adversarial samples, and programs for
calculating the metrics are publicly available and can be used
as a benchmark for evaluating future research in this direction.
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