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Abstract—Deep neural networks (DNN) have been shown to
be useful in a wide range of applications. However, they are also
known to be vulnerable to adversarial samples. By transforming a
normal sample with some carefully crafted human imperceptible
perturbations, even highly accurate DNN make wrong decisions.
Multiple defense mechanisms have been proposed which aim to
hinder the generation of such adversarial samples. However, a
recent work show that most of them are ineffective. In this work,
we propose an alternative approach to detect adversarial samples
at runtime. Our main observation is that adversarial samples
are much more sensitive than normal samples if we impose
random mutations on the DNN. We thus first propose a measure
of ‘sensitivity’ and show empirically that normal samples and
adversarial samples have distinguishable sensitivity. We then
integrate statistical hypothesis testing and model mutation testing
to check whether an input sample is likely to be normal or
adversarial at runtime by measuring its sensitivity. We evaluated
our approach on the MNIST and CIFAR10 datasets. The results
show that our approach detects adversarial samples generated
by state-of-the-art attacking methods efficiently and accurately.

Keywords-adversarial sample; detection; deep neural network;
mutation; testing; sensitivity

I. INTRODUCTION

In recent years, deep neural networks (DNN) have been

shown to be useful in a wide range of applications including

computer vision [16], speech recognition [52], and malware

detection [56]. However, recent research has shown that DNN

can be easily fooled [43], [14] by adversarial samples, i.e.,

normal samples imposed with small, human imperceptible

changes (a.k.a. perturbations). Many DNN-based systems like

image classification [30], [33], [8], [50] and speech recog-

nition [9] are shown to be vulnerable to such adversarial

samples. This undermines using DNN in safety critical appli-

cations like self-driving cars [6] and malware detection [56].

To mitigate the threat of adversarial samples, the machine

learning community has proposed multiple approaches to

improve the robustness of the DNN model. For example, an

intuitive approach is data augmentation. The basic idea is

to include adversarial samples into the training data and re-

train the DNN [35], [22], [44]. It has been shown that data

augmentation improves the DNN to some extent. However,

it does not help defend against unseen adversarial samples,

especially those obtained through different attacking methods.

Alternative approaches include robust optimization and adver-

sarial training [37], [45], [55], [28], which take adversarial

perturbation into consideration and solve the robust optimiza-

tion problem directly during model training. However, such

approaches usually increase the training cost significantly.

Meanwhile, the software engineering community attempts

to tackle the problem using techniques like software testing

and verification. In [44], neuron coverage was first proposed

to be a criteria for testing DNN. Subsequently, multiple testing

metrics based on the range coverage of neurons were pro-

posed [25]. Both white-box testing [34], black-box testing [44]

and concolic testing [41] strategies have been proposed to

generate adversarial samples for adversarial training. However,

testing alone does not help in improving the robustness of

DNN, nor does it provide guarantee that a well-tested DNN

is robust against new adversarial samples. The alternative

approach is to formally verify that a given DNN is robust (or

satisfies certain related properties) using techniques like SMT

solving [20], [47] and abstract interpretation [13]. However,

these techniques usually have non-negligible cost and only

work for a limited class of DNN (and properties).

In this work, we provide a complementary perspective

and propose an approach for detecting adversarial samples at

runtime. The idea is that, given an arbitrary input sample to

a DNN, to decide at runtime whether it is likely to be an

adversarial sample or not. If it is, we raise an alarm and report

that the sample is ‘suspicious’ with certain confidence. Once

detected, it can be rejected or checked depending on different

applications. Our detection algorithm integrates mutation test-

ing of DNN models [26] and statistical hypothesis testing [4].

It is designed based on the observation that adversarial samples

are much more sensitive to mutation on the DNN than normal

samples, i.e., if we mutate the DNN slightly, the mutated

DNN is more likely to change the label on the adversarial

sample than that on the normal one. This is illustrated in

Fig. 1. The left figure shows a label change on a normal

sample, i.e., given a normal sample which is classified as
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Fig. 1: Label change of a normal sample and an adversarial sample against DNN mutation models.

a cat, a label change occurs if the mutated DNN classifies

the input as a dog. The right figure shows a label change

on an adversarial sample, i.e., given an adversarial sample

which is mis-classified as a dog, a label change occurs if

the mutated DNN classifies the input as a cat. Our empirical

study confirms that the label change rate (LCR) of adversarial

samples is significantly higher than that of normal samples

against a set of DNN mutants. We thus propose a measure of

a sample’s sensitivity against a set of DNN mutants in terms

of LCR. We further adopt statistical analysis methods like

receiver operating characteristic (ROC [10]) to show that we

can distinguish adversarial samples and normal samples with

high accuracy based on LCR. Our algorithm then takes a DNN

model as input, generates a set of DNN mutants, and applies

statistical hypothesis testing to check whether the given input

sample has a high LCR and thus is likely to be adversarial.

We implement our approach as a self-contained toolkit

called mMutant [1]. We apply our approach on the MNIST

and CIFAR10 dataset against the state-of-the-art attacking

methods for generating adversarial samples. The results show

that our approach detects adversarial samples efficiently with

high accuracy. All four DNN mutation operators we exper-

imented with show promising results on detecting 6 groups

of adversarial samples, e.g., capable of detecting most of

the adversarial samples within around 150 DNN mutants. In

particular, using DNN mutants generated by Neuron Acti-

vation Inverse (NAI) operator, we manage to detect 96.4%

of the adversarial samples with 74.1 mutations for MNIST

and 90.6% of the adversarial samples with 86.1 mutations for

CIFAR10 on average.

II. BACKGROUND

In this section, we review state-of-the-art methods for gen-

erating adversarial samples for DNN, and define our problem.

A. Adversarial Samples for Deep Neural Networks

In this work, we focus on DNN classifiers which take a

given sample and label the sample accordingly (e.g., as a

certain object). In the following, we use x to denote an input

sample for a DNN f . We use cx to denote the ground-truth

label of x. Given an input sample x and a DNN f , we

can obtain the label of the input x under f by performing

forward propagation. x is regarded as an adversarial sample
with respect to the DNN f if f(x) �= cx. x is regarded as a

normal sample with respect to the DNN f if f(x) = cx. Notice

that under our definition, those samples in the training/testing

dataset wrongly labeled by f are also adversarial samples.

Since Szegedy et al. discoveried that neural networks

are vulnerable to adversarial samples [43], many attacking

methods have been developed on how to generate adversarial

samples efficiently (e.g., with minimal perturbation). That

is, given a normal sample x, an attacker aims to find a

minimum perturbation Δx which satisfies f(x + Δx) �= cx.

In the following, we briefly introduce several state-of-the-art

attacking algorithms.

FGSM: The Fast Gradient Sign Method (FGSM) [14] is

designed based on the intuition that we can change the

label of an input sample by changing its softmax value to

the largest extent, which is represented by its gradient. The

implementation of FGSM is straightforward and efficient. By

simply adding up the sign of gradient of the cost function

with respect to the input, we could quickly obtain a potential

adversarial counterpart of a normal sample by the follow

formulation:

x̂ = x+ εsign(∇J(θ, x, cx))

, where J is the cost used to train the model, ε is the attacking

step size and θ are the parameters. Notice that FGSM does

not guarantee that the adversarial perturbation is minimal.

JSMA: Jacobian-based Saliency Map Attack (JSMA) [33] is

devised to attack a model with minimal perturbation which

enables the adversarial sample to mislead the target model

into classifying it with certain (attacker-desired) label. It is a

greedy algorithm that changes one pixel during each iteration

to increase the probability of having the target label. The idea

is to calculate a saliency map based on the Jacobian matrix

to model the impact that each pixel imposes on the target

classification. With the saliency map, the algorithm picks the

pixel which may have the most significant influence on the

desired change and then increases it to the maximum value.

The process is repeated until it reaches one of the stopping

criteria, i.e., the number of pixels modified has reached the

bound, or the target label has been achieved. Define⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ai =

∂Ft(x)

∂Xi

bi =
∑
k �=t

∂Fk(x)

∂Xi

Then, the saliency map at each iteration is defined as follow:

S(x, t)i =

{
ai × |bi| if ai > 0 and bi < 0

0 otherwise
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However, it is too strict to select one pixel at a time because

few pixels could meet that definition. Thus, instead of picking

one pixel at a time, the authors proposed to pick two pixels

to modify according to the follow objective:

arg max
(p1,p2)

(
∂Ft(x)

∂xp1

+
∂Ft(x)

∂xp2

)
×

∣∣∣∣∣∣
∑

i=p1,p2

∑
k �=t

∂Fk(x)

∂xi

∣∣∣∣∣∣
where(p1, p2) is the candidate pair, and t is the target class.

JSMA is relatively time-consuming and memory-consuming

since it needs to compute the Jacobian matrix and pick out a

pair from nearly
(
n
2

)
candidate pairs at each iteration.

DeepFool: The idea of DeepFool (DF) is to make the

normal samples cross the decision boundary with minimal

perturbations [30]. The authors first deduced an iterative

algorithm for binary classifiers with Tayler’s Formula,

and then analytically derived the solution for multi-class

classifiers. The exact derivation process is complicated and

thus we refer the readers to [30] for details.

C&W: Carlini et al. [8] proposed a group of attacks based on

three distance metrics. The key idea is to solve an optimization

problem which minimizes the perturbation imposed on the

normal sample (with certain distance metric) and maximizes

the probability of the target class label. The objective function

is as follow:

argminΔx+ c · f(x̂, t)
where Δx is defined according to some distance metric, e.g,

L0, L2, L∞, x̂ = x+Δx is the clipped adversarial sample and

t is its target label. The idea is to devise a clip function for

the adversarial sample such that the value of each pixel dose

not exceed the legal range. The clip function and the best loss

function according to [8] are shown as follows.

clip :x̂ =0.5(tanh(x̃) + 1)

loss :f(x̂, t) =max(max{G(x̂)c : c �= t} −G(x̂)t, 0)

where G(x) denotes the output vector of a model and t is the

target class. Readers can refer to [8] for details.

Black-Box: All the above mentioned attacks are white-box at-

tacks which means that the attackers require the full knowledge

of the DNN model. Black-Box (BB) attack only needs to know

the output of the DNN model given a certain input sample.

The idea is to train a substitute model to mimic the behaviors

of the target model with data augmentation. Then, it applies

one of the existing attack algorithm, e.g., FGSM and JSMA,

to generate adversarial samples for the substitute model. The

key assumption to its success is that the adversarial samples

transfer between different model architectures [43], [14].

B. Problem Definition

Observing that adversarial samples are relatively easy to

craft, a variety of defense mechanisms against adversarial

samples have been proposed [15], [28], [51], [27], [38], as

we have briefly introduced in Section I. However, Athalye

et al. [3] systematically evaluated the state-of-the-art defense

mechanisms recently and showed that most of them are

ineffective. Alternative defense mechanisms are thus desirable.

In this work, we take a complementary perspective and pro-

pose to detect adversarial samples at runtime using techniques

from the software engineering community. The problem is:
given an input sample x to a deployed DNN f , how can we
efficiently and accurately decide whether f(x) = cx (i.e., a
normal sample) or not (i.e., an adversarial sample)? If we

know that x is likely an adversarial sample, we could reject

it or further check it to avoid bad decisions. Furthermore, can

we quantify some confidence on the drawn conclusion?

III. OUR APPROACH

Our approach is based on the hypothesis that, in most cases

adversarial samples are more ‘sensitive’ to mutations on the

DNN model than normal samples. That is, if we generate

a set of slightly mutated DNN models based on the given

DNN model, the mutated DNN models are more likely to

label an adversarial sample with a label different from the

label generated by the original DNN model, as illustrated in

Fig. 1. In other words, our approach is designed based on a

measure of sensitivity for differentiating adversarial samples

and normal samples. In the literature, multiple measures

have been proposed to capture their differences, e.g., density

estimate, model uncertainty estimate [11], and sensitivity to

input perturbation [46]. Our measure however allows us to

detect adversarial samples at runtime efficiently through model

mutation testing.

A. Mutating Deep Neural Networks

In order to test our hypothesis (and develop a practical

algorithm), we need a systematic way of generating mutants of

a given DNN model. We adopt the method developed in [26],

which is a proposal of applying mutation testing to DNN.

Mutation testing [19] is a well-known technique to evaluate

the quality of a test suiteand, and thus is different from

our work. The idea is to generate multiple mutations of the

program under test, by applying a set of mutation operators,

in order to see how many of the mutants can be killed by the

test suite. The definition of the mutation operators is a core

component of the technique. Given the difference between

traditional software systems and DNN, mutation operators

designed for traditional programs cannot be directly applied to

DNN. In [26], Ma et al. introduced a set of mutation operators

for DNN-based systems at different levels like source level

(e.g., the training data and training programs) and model level

(e.g., the DNN model).

In this work, we require a large group of slightly mutated

models for runtime adversarial sample detection. Of all the

mutation operators proposed in [26], mutation operators de-

fined at the source level are not considered. The reason is

that we would need to train the mutated models from scratch

which is often time-consuming. We thus focus on the model-

level operators, which modify the original model directly to
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TABLE I: DNN model mutation operators

Mutation Operator Level Description

Gaussian Fuzzing (GF) Weight Fuzz weight by Gaussian Distribution
Weight Shuffling (WS) Neuron Shuffle selected weights
Neuron Switch (NS) Neuron Switch two neurons within a layer
Neuron Activation Inverse (NAI) Neuron Change the activation status of a neuron

obtain mutated models without training. Specifically, we adopt

four of the eight defined operators from [26] shown in Table I.

For example, NAI means that we change the activation status

of a certain number of neurons in the original model. Notice

that the other four operators defined in [26] are not applicable

due to the specific architecture of the deep learning models

we focus on in this work.

B. Evaluating Our Hypothesis

We first conduct experiments to measure the label change

rate (LCR) of adversarial samples and normal samples when

we feed them into a set of mutated DNN models. Given an

input sample x (either normal or adversarial) and a DNN

model f , we first adopt the model mutation operators shown

in Table I to obtain a set of mutated models. Note that some of

the resultant mutated models may be of low quality, i.e., their

classification accuracy on the test data drops significantly. We

discharge those low quality ones and only keep those accurate
mutated models which retain an accuracy on the test data, i.e.,

at least 90% of the accuracy of the original model, to ensure

that the decision boundary does not perturb too much. Once

we obtain such a set of mutated models F , we then obtain

the label fi(x) of the input sample x on every mutated model

fi ∈ F . We define LCR on a sample x as follows (with respect

to F ).

ς(x) =
|{fi|fi ∈ F and fi(x) �= f(x)}|

|F |
, where |S| is the number of elements in a set S. Intuitively,

ς(x) measures how sensitive an input sample x is on the

mutations of a DNN model.

Table II summarizes our empirical study on measuring ς(x)
using two popular dataset, i.e., the MNIST and CIFAR10

dataset, and multiple state-of-the-art attacking methods. A total

of 500 mutated models are generated using NAI operator

which randomly selects some neurons and changes their acti-

vation status. The first column shows the name of the dataset.

The second shows the mutation rate, i.e., the percentage of the

neurons whose activation status are changed. The third shows

the average LCR (with confidence interval of 99% significance

level) of 1000 normal samples randomly selected from the

testing set. The remaining columns show the average LCR

(with confidence interval of 99% significance level) of 1000

adversarial samples which are generated using state-of-the-art

methods. Note that column ‘Wrongly Labeled’ are samples

from the testing set which are wrongly labeled by the original

DNN model.

Based on the results, we can observe that at any mutation

rate, the ς values of the adversarial samples are significantly

original mutation 1mutation 2

positive sample
negative sample
adversarial sample

decision boundaries

Fig. 2: An explanatory model of the model mutation effect.

higher than those of the normal samples.

ςadv is significantly larger than ςnor.

Further study on the LCR distance between normal and

adversarial samples with respect to different model mutation

operators is presented in Section IV. The results are consistent.

A practical implication of the observation is that given an input

sample x, we could potentially detect whether x is likely to

be normal or adversarial by checking ς(x).

C. Explanatory Model

In the following, we use a simple model to explain the above

observation. Recall that adversarial samples are generated in a

way which tries to minimize the modification to a normal sam-

ple while is still able to cross the decision boundary. Different

kinds of attacks use different approaches to achieve this goal.

Our hypothesis is that most adversarial samples generated by

existing methods are near the decision boundary (to minimize

the modification). As a result, as we randomly mutate the

model and perturb the decision boundary, adversarial samples

are more likely to cross the mutated decision boundaries, i.e., if

we feed an adversarial sample to a mutated model, the output

label has a higher chance to change from its original label.

This is illustrated visually in Fig. 2.

D. The Detection Algorithm

The results shown in Table II suggests that we can use LCR

to distinguish adversarial samples and normal samples. In the

following, we present an algorithm which is designed to detect

adversarial samples at runtime based on measuring the LCR of

a given sample. The algorithm is based on the idea of statistical

model checking [4], [2].

The inputs of our algorithm are a DNN model f , a sample

x and a threshold ςh which is used to decide whether the

input is adversarial. We will discuss later on how to identify

ςh systematically. The basic idea of our algorithm is to use

hypothesis testing to decide the truthfulness of two mutual
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TABLE II: Average ς (shown in percentage with confidence interval of 99% significance level) for normal samples and

adversarial samples under 500 NAI mutated models.

Dataset Mutation rate Normal samples
Adversarial samples

Wrong labeled FGSM JSMA C&W Black-Box Deepfool

MNIST
0.01 1.28± 0.24 14.58± 2.64 47.56± 3.56 50.80± 2.46 12.07± 1.26 44.94± 3.43 37.62± 2.83
0.03 3.06± 0.44 27.16± 3.11 52.12± 3.04 57.86± 2.02 21.88± 1.38 51.15± 2.91 46.61± 2.43
0.05 3.88± 0.53 32.53± 3.15 54.54± 2.80 59.07± 1.95 27.73± 1.37 53.97± 2.67 50.30± 2.24

CIFAR10
0.003 2.20± 0.55 17.95± 1.39 14.06± 1.33 28.65± 1.30 19.77± 1.41 10.36± 1.06 30.84± 1.37
0.005 5.05± 0.91 32.18± 1.62 27.87± 1.71 47.75± 1.27 33.95± 1.60 21.66± 1.38 47.70± 1.23
0.007 7.28± 1.12 39.76± 1.70 36.19± 1.81 56.02± 1.29 41.22± 1.64 27.57± 1.5 54.41± 1.21

exclusive hypothesis.

H0 : ς(x) ≥ ςh

H1 : ς(x) ≤ ςh

Three (standard) additional parameters, α, β and δ, are used to

control the probability of making an error. That is, we would

like to guarantee that the probability of a Type-I (respectively,

a Type-II) error, which rejects H0 (respectively, H1) while H0

(respectively, H1) holds, is less or equal to α (respectively,

β). The test needs to be relaxed with an indifferent region

(r−δ, r+δ), where neither hypothesis is rejected and the test

continues to bound both types of errors [2]. In practice, the

parameters (i.e., (α, β), and δ) can often be decided by how

much testing resources are available. In general, more resource

is required for a smaller error bound.

Our detection algorithm keeps generating accurate mutated

models (with an accuracy more than certain threshold on the

testing data) from the original model and evaluating ς(x) until

a stopping condition is satisfied. We remark that in practice we

could generate a set of accurate mutated models before-hand

and simply use them at runtime to further save detection time.

There are two main methods to decide when the testing

process can be stopped, i.e., we have sufficient confidence to

reject a hypothesis. One is the fixed-size sampling test (FSST),

which runs a predefined number of tests. One difficulty of

this approach is to find an appropriate number of tests to be

performed such that the error bounds are valid. The other

approach is the sequential probability ratio test (SPRT [4]).

SPRT dynamically decides whether to reject or not a hypoth-

esis every time after we update ς(x), which requires a variable

number of mutated models. SPRT is usually faster than FSST

as the testing process ends as soon as a conclusion is made.

In this work, we use SPRT for the detection. The details

of our SPRT-based algorithm is shown in Algorithm 1. The

inputs of the detection algorithm include the input sample

x, the original DNN model f , a mutation rate γ, and a

threshold of LCR ςh. Besides, the detection is error bounded

by 〈α, β〉 and relaxed with an indifference region δ. To apply

SPRT, we keep generating accurate mutated models at line

5. The details of generating mutated models using the four

operators in Table I are shown in Algorithm 2, Algorithm 3,

Algorithm 4, and Algorithm 5 respectively. We then evaluate

whether fi(x) = f(x) at line 7. If we observe a label change

of x using the mutated model fi, we calculate and update the

SPRT probability ratio at line 9 as:

pr =
pz1(1− p1)

n−z

pz0(1− p0)n−z

, with p1 = ςh − δ and p0 = ςh + δ. The algorithm stops

whenever a hypothesis is accepted either at line 11 or line

14. We remark that SPRT is guaranteed to terminate with

probability 1 [4].

We briefly introduce the NAI operator shown in Algorithm 2

as an example of the four mutation operators. We first obtain

the set of N unique neurons1 at line 1. Then we randomly

select 	N × γ
 neurons (γ is the mutation rate) for activation

status inverse at line 2. Afterwards, we traverse the model f
layer by layer at line 3 and take those selected neurons at line

4. We then inverse the activation status of the selected neurons

by multiplying their weights with -1 at line 7.

IV. IMPLEMENTATION AND EVALUATION

We have implemented our approach in a self-contained

toolkit which is available online [1]. It is implemented in

Python with about 5k lines of code. In the following, we

evaluate the accuracy and efficiency of our approach through

multiple experiments.

A. Experiment Settings

a) Datasets and Models: We adopt two popular image

datasets for our evaluation: MNIST and CIFAR10. Each

dataset has 60000/50000 images for training and 10000/10000

images for testing. The target models for MNIST and CI-

FAR10 are LeNet [23] and GooglLeNet [42] respectively. The

accuracy of our trained models on training and testing dataset

are 98.5%/98.3% for MNIST and 99.7%/90.5% for CIFAR10

respectively, which both achieve state-of-the-art performance.

b) Mutated models generation: We employ the four

mutation operators shown in Table I to generate mutated

models. In total, we have 236 neurons for the MNIST model

and 7914 neurons for the CIFAR10 model. For each mutation

operator, we generate three groups of mutation models from

the original trained model using different mutation rate to

see its effect. The mutation rate we use for the MNIST

model is {0.01, 0.03, 0.05} and {0.003, 0.005, 0.007} for

the CIFAR10 model (since there are more neurons). Note

1For convolutional layer, each slide of convolutional kernel is regarded as
a neuron
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Algorithm 1: SPRT-Detect(x, f, γ, ςh, α, β, δ)

1 Let stop = false;

2 Let z = 0 be the number of mutated models fi that

satisfy fi(x) �= f(x);
3 Let n = 0 be the total number of generated mutated

models so far;

4 while !stop do
5 Apply a mutation operator to randomly generate an

accurate mutation model fi of f with mutation

rate γ;

6 n = n+ 1;

7 if fi(x) �= f(x) then
8 z = z + 1;

9 Calculate the SPRT probability ratio as pr;

10 if pr ≤ β
1−α then

11 Accept the hypothesis that ς(x) ≥ ςh and

report the input as an adversarial sample

with error bounded by β;

12 return;

13 if pr ≥ 1−β
α then

14 Accept the hypothesis that ς(x) ≤ ςh and

report the input as a normal sample with

error bounded by α;

15 return;

Algorithm 2: NAI(f, γ)

1 Let N be the set of unique neurons;

2 Randomly select 	N × γ
 unique neurons;

3 for every layer in f do
4 Let Q be the set of selected neurons in this layer;

5 if Q �= ∅ then
6 for q ← Q do
7 q.weight = −1 · q.weight;

that some mutation models may have significantly worse

performance, so not all mutated models are valid. In our

experiment, we only keep those mutation models whose

accuracy on the testing dataset is not lower than 90% of that

of its seed model. For each mutation rate, we generate 500

such accurate mutated models for our experiments.

c) Adversarial samples generation: We test our detection

algorithm against four state-of-the-art attacks in Clverhans [31]

and Deepfool [30] (detailed in Section II). For each kind of

attack, we generate a set of adversarial samples for evalua-

tion. The parameters for each kind of attack to generate the

adversarial samples are summarized as follows.

• FGSM: There is only one parameter to control the scale

of perturbation. We set it as 0.35 for MNIST and 0.03

for CIAFR10 according to the original paper.

Algorithm 3: GF (f, γ)

1 Let W be the parameters of f ;

2 Extract the parameters of f layer by layer;

3 Let N be the total number of parameters of f ;

4 Randomly select 	N × γ
 parameters to fuzz;

5 for every layer in f do
6 Let W [i] be the parameters of this layer;

7 Find all the selected parameters P in W [i];
8 if P �= ∅ then
9 Let μ = Avg(W [i]);

10 Let σ = Std(W [i]);
11 for every parameter in P do
12 Randomly assign the parameter according

to N (μ, σ2);

Algorithm 4: WS(f, γ)

1 Let N be the set of unique neurons;

2 Randomly select 	N × γ
 unique neurons to shuffle ;

3 for every layer in f do
4 Let Q be the set of selected neurons in this layer;

5 if Q �= ∅ then
6 for q ← Q do
7 q.weight = Shuffle(q.weight);

• JSMA: There is only one parameter to control the maxi-

mum distortion. We set it as 12% for both datasets, which

is slightly smaller than the original paper.

• C&W: There are three types of attacks proposed in [8]:

L0, L2 and L∞. We adopt L2 attack according to the au-

thor’s recommendation. We also set the scale coefficient

to be 0.6 for both datasets. We set the iteration number to

be 10000 for MNIST and 1000 for CIFAR10 according

to the original paper.

• Deepfool: We set the maximum number of iterations to

be 50 and the termination criterion (to prevent vanishing

updates) to be 0.02 for both datasets, which is a default

setting in the original paper.

• Black-Box: The key setting of the Black-Box attack is to

train a substitute model of the target model. The substitute

model for MNIST is the first model defined in Appedix

A of [32]. For CIFAR10, we use the LeNet [23] as

the surrogate model. Afterwards, the attack algorithm we

used for the surrogate model is FGSM.

For each attack, we make 1000 attempts to generate adver-

sarial samples. Notice that not all attempts are successful and

as a result we manage to generate no more than 1000 adver-

sarial samples for each attack. Further recall that according

to our definition, those samples in the testing dataset which

are wrongly labeled by the trained DNN are also adversarial

samples. Thus, in addition to the adversarial samples generated
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Algorithm 5: NS(f, γ)

1 for every layer in f do
2 Let N be the number of unique neurons in this

layer;

3 Randomly select 	N × γ
 unique neurons;

4 Let Q be the set of selected neurons;

5 Randomly switch the weights of neurons in Q;

TABLE III: Number of samples in each group.

Dataset Attack Samples

MNIST

Normal 1000
Wrongly-labeled 171

FGSM 1000
JSMA 1000

BB 1000
C&W 743

Deepfool 1000

CIFAR10

Normal 1000
Wrongly-labeled 951

FGSM 1000
JSMA 1000

BB 1000
C&W 1000

Deepfool 1000

from the attacking methods, we attempt to randomly select

1000 samples from the testing dataset which are wrongly

classified by the target model as well. Table III summarizes

the number of normal samples and valid adversarial samples

for each kind of attack used for the experiments.

B. Evaluation Metrics

a) Distance of label change rate: We use dlcr =
ςadv/ςnor where ςadv (and ςnor) is the average LCR of adver-

sarial samples (and normal samples) to measure the distance

between the LCR of adversarial samples and normal samples.

The larger the value is, the more significant is the difference.

b) Receiver characteristics operator: Since our detection

algorithm works based on a threshold LCR ςh, we first

adopt receiver characteristic operator (ROC) curve to see how

good our proposed feature, i.e., LCR under model mutation,

is to distinguish adversarial and normal samples [10], [11].

The ROC curve plots the true positive rate (tpr) against

false positive rate (fpr) for every possible threshold for the

classification. From the ROC curve, we could further calculate

the area under the ROC curve (AUROC) to characterize how

well the feature performs. A perfect classifier (when all the

possible thresholds yield true positive rate 1 and false positive

rate 0 for distinguishing normal and adversarial samples) will

have AUROC 1. The closer is AUROC to 1, the better is the

feature.

c) Accuracy of detection: The accuracy of the detection

is defined in a standard way as follows. Given a set of images

X (labeled as normal or adversarial), what is the percentage

that our algorithm correctly classifies it as normal or adversar-

ial? Notice that the accuracy of detecting adversarial samples is

equivalent to tpr and the accuracy of detecting normal samples

is equivalent to 1 − fpr. The higher the accuracy, the better

is our detection algorithm.

C. Research Questions

RQ1: Is there a significant difference between the LCR of
adversarial samples and normal samples under different model
mutations? To answer the question, we calculate the average

LCR of the set of normal samples and the set of adversarial

samples generated as described above with a set of mutated

models using different mutation operators. A set of 500

mutants are generated for each mutation operator (note that

mutation rate 0.003 is too low for NS to generate mutated

models for CIFAR10 model and thus omitted). According to

the detailed results summarized in Tabel II and IV, we have

the following answer.

Answer to RQ1: Adversarial samples have significantly
higher LCR under model mutation than normal samples.

In addition, we have the following observations.

• Adversarial samples generated from every kind of attack

have significantly larger LCR than normal samples under

a set of mutated models under any mutation rate, and

different kind of attack have different LCR. We can see

that the LCR of normal samples are very low (i.e., compa-

rable to the testing error) and that of adversarial samples

are much higher. Fig. 3 shows the distance between LCR

of adversarial samples and normal samples for different

mutation operators. We can see that the distance is mostly

larger than 10 and can be up to 375, which well supports

our answer to RQ1. We can also observe that adversarial

samples generated by FGSM/JSMA/Deepfool/Black-box

have relatively higher LCR distance than those generated

by CW and those wrong-labeled samples in the original

dataset. In general, our detection algorithm is able to

detect attacks with larger distance faster and better.

• As we increase the model mutation rate, the LCR of

both normal samples and adversarial samples increase (as

expected) and the distance between them decreases. We

can observe from Table IV that the LCR increases with an

increasing model mutation rate in all cases. From Fig. 3,

we see that a smaller model mutation rate like 0.01 for

MNIST and 0.003 for CIFAR10 have the largest LCR

distance. This is probably because as we increase the

mutation rate, normal samples are more sensitive in terms

of the change of LCR since it is a much smaller number.

• Like adversarial samples generated by different attacking

methods, wrongly labeled samples also have significantly

larger LCR than normal samples. This suggests that

wrongly labeled samples are also sensitive to the change

of decision boundaries from model mutations as adversar-

ial samples. They are the same as the adversarial samples

which are near to the decision boundary and thus can be

potentially detected.
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TABLE IV: Label change rate (confidence interval with 99% significance level) for each group of samples under model mutation

testing with different mutation operators (NAI result is shown previously in Table II). The results are shown in percentage.

Mutation operator Dataset Mutation rate Normal samples
Adversarial samples

Wrong labeled FGSM JSMA C&W Black-Box Deepfool

NS

MNIST
0.01 0.12± 0.07 3.78± 0.94 44.67± 3.92 36.03± 3.24 3.42± 0.79 40.06± 3.82 26.09± 3.16
0.03 0.37± 0.19 10.78± 2.30 46.32± 3.71 47.45± 2.61 8.93± 1.16 43.05± 3.59 34.20± 2.92
0.05 0.89± 0.35 19.30± 3.18 48.91± 3.41 56.51± 2.11 15.87± 1.53 46.94± 3.29 42.69± 2.65

CIFAR10
0.003 - - - - - - -
0.005 0.02± 0.03 0.3± 0.15 0.3± 0.16 0.46± 0.16 0.37± 0.18 0.08± 0.05 0.86± 0.24
0.007 0.94± 0.4 10.12± 1.19 7.16± 1.06 16.07± 1.21 11.04± 1.19 4.61± 0.8 19.05± 1.37

WS

MNIST
0.01 0.93± 0.18 9.83± 2.33 46.04± 3.73 46.96± 2.67 7.98± 1.15 42.42± 3.62 33.41± 2.97
0.03 3.03± 0.35 21.84± 3.11 49.83± 3.26 56.01± 2.10 17.01± 1.38 47.98± 3.14 43.07± 2.60
0.05 3.83± 0.42 26.96± 3.26 51.46± 3.06 57.56± 2.00 21.03± 1.40 50.20± 2.94 46.37± 2.46

CIFAR10
0.003 0.79± 0.35 9.04± 1.17 6.43± 1.05 14.85± 1.27 10.01± 1.18 9.11± 0.74 18.78± 1.46
0.005 2.01± 0.55 17.0± 1.53 12.88± 0.145 29.42± 1.55 18.42± 1.55 8.49± 1.06 32.63± 1.63
0.007 2.69± 0.65 21.6± 1.67 17.21± 1.67 37.69± 1.63 23.40± 1.69 11.15± 1.22 40.03± 1.63

GF

MNIST
0.01 0.57± 0.30 16.75± 3.33 47.87± 3.54 56.39± 2.14 14.27± 1.56 45.56± 3.41 41.07± 2.76
0.03 1.39± 0.46 27.00± 3.40 51.87± 3.10 60.64± 1.85 22.10± 1.64 50.59± 2.97 48.06± 2.41
0.05 2.49± 0.59 33.28± 3.28 55.02± 2.77 62.36± 1.74 25.87± 1.55 53.38± 2.68 51.60± 2.19

CIFAR10
0.003 1.42± 0.51 15.36± 1.52 11.42± 1.42 26.52± 1.53 17.0± 1.51 8.05± 1.10 31.36± 1.68
0.005 2.89± 0.75 25.31± 1.75 20.71± 1.79 41.69± 1.54 26.59± 1.75 13.75± 1.34 45.8± 1.57
0.007 4.09± 0.91 31.97± 1.86 27.69± 1.97 50.07± 1.52 32.94± 1.82 18.29± 1.48 53.67± 1.51
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Fig. 3: LCR distance between normal samples and adversarial samples using different mutation operators.

RQ2: How good is the LCR under model mutation as an
indicator for the detection of adversarial samples? To answer

the question, we further investigate the ROC curve using LCR

as the indicator of classifying an input sample as normal

or adversarial. We compare our proposed feature, i.e., LCR

under model mutations with two baseline approaches. The first

baseline (referred as baseline 1) is a combination of density

estimate and model uncertainty estimate as joint features [11].

The second baseline (referred as baseline 2) is based on the

label change rate of imposing random perturbations on the

input sample [46].

Table V presents the AUROC results under different model

mutation operators. We compare our results with two baselines

introduced above. The best AUROC results among the three

approaches are in bold. We could observe that our proposed

feature beats both baselines in over half the cases (excluding

Deepfool which we do not have any reported baseline results),

while baseline 1 and baseline 2 only win 1 and 3 cases

respectively. We could also observe that the AUROC results

are mostly very close to 1 (a perfect classifier), i.e., usually

larger than 0.9, which suggests that we could achieve high

accuracy using the proposed feature to distinguish adversarial

samples. We thus have the following answer to RQ2.

Answer to RQ2: LCR under model mutation could out-
perform current baselines to detect adversarial samples.

TABLE V: AUROC results. BL means ‘baseline’.

Dataset Attack BL 1 BL 2 NAI GF NS WS

MNIST

FGSM 0.9057 0.9767 0.9744 0.9747 0.9554 0.9648
JSMA 0.9813 0.9946 0.9965 0.9975 0.9975 0.9969
CW 0.9794 0.9394 0.9576 0.9521 0.909 0.9225
BB – 0.9403 0.9789 0.9763 0.9631 0.9725
DF – – 0.9881 0.9889 0.9853 0.9864
WL – 0.9696 0.9689 0.9727 0.9612 0.9692

CIFAR10

FGSM 0.7223 0.9099 0.8956 0.8779 0.7559 0.8458
JSMA 0.9152 0.8753 0.9733 0.9737 0.9355 0.9729
CW 0.9217 0.8385 0.926 0.9205 0.8464 0.8994
BB – 0.9251 0.874 0.8371 0.7068 0.8702
DF – – 0.974 0.9786 0.9549 0.9753
WL – 0.9148 0.9185 0.9146 0.8331 0.876

RQ3: How effective is our detection algorithm based on LCR
under model mutation? To answer the question, we apply our

detection algorithm (Algorithm 1) on each set of adversarial

samples generated using each attack and evaluate the accuracy

of the detection in Fig. 4. We also report the accuracy of our

algorithm on a set of normal samples. The results are based

on the set of models generated using mutation rate 0.05 for

MNIST and 0.005 for CIFAR10 as they have good balance

between detecting adversarial and normal samples.

We set the parameters of Algorithm 1 as follows. Since

different kind of attacks have different LCR but the LCR of

normal sample is relatively stable, we choose to test against

the LCR of normal samples. Specifically, we set the threshold

ςh to be ρ·ςnr, where ςnr is the upper bound of the confidence
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Fig. 4: Detection accuracy and number of mutated models needed.

interval of ςnor and ρ (≥ 1) is a hyper parameter to control the

sensitivity of detecting adversarial samples in our algorithm.

The smaller ρ is, the more sensitive our algorithm is to detect

adversarial samples. The error bounds for SPRT is set as α =
0.05, β = 0.05. The indifference region is set as 0.1 · ςnr.

Fig. 4 shows the detection accuracy and average num-

ber of model mutants needed for the detection using the

4 mutation operators for MNIST and CIFAR10 dataset re-

spectively. We could observe that our detection algorithm

achieves high accuracy on every kind of attack for ev-

ery mutation operator. On average, the GF/NAI/NS/WS

operators achieves accuracy of 94.9%/96.4%/83.9%/91.4%

with 75.5/74.1/145.3/105.4 mutated models for MNIST

(with ρ=1) and 85.5%/90.6%/56.6%/74.8% (with ρ=1) with

121.7/86.1/303/176.2 mutated models for CIFAR10 on de-

tecting the 6 kinds of adversarial samples. Meanwhile, we

maintain high detection accuracy of normal samples as well,

i.e., 90.8%/89.7%/94.7%/92.9% for MNIST (with ρ=1) and

79.3%/74%/84.6%/81.6% (with ρ=1) for CIFAR10 for the

above 4 operators respectively. Notice that for CIFAR10, we

could not train a good substitute model (the accuracy is below

50%) using Black-box attack and thus have no result. The

results show that our detection algorithm is able to detect most

of adversarial samples effectively. In addition, we observe that

the more accurate is the original (and as a result the mutated)

DNN model is (e.g., MNIST), the better is our algorithm.

Besides, we are able to achieve accuracy close to 1 for JSMA

and DF. We also recommend to use NAI/GF operators over

NS/WS operators as they have consistently better performance

than the others. We thus have the following answer to RQ3.

Answer to RQ3: Our detection algorithm based on statis-
tical hypothesis testing could effectively detect adversarial
samples.

Effect of ρ In this experiment, we vary the hyper parameter

ρ to see its effect on the detection. As shown in Fig. 4, we

set ρ as {1, 1.5, 2} for MNIST and {1, 2, 3} for CIFAR10.

We could observe that as we increase ρ, we have a lower

accuracy on detecting adversarial samples but a higher

accuracy on detecting normal samples. The reason is that

as we increase ρ, the threshold for the detection increases.

In this case, our algorithm will be less sensitive to detect

adversarial samples since the threshold is higher. We could

also observe that we would need more mutations with a

higher threshold. In summary, the selection of ρ could be

application specific and our practical guide is to set a small ρ
if the application has a high safety requirement and vice versa.

RQ4: What is the cost of our detection algorithm? The cost

of our algorithm mainly consists of two parts, i.e., generating

mutated models (denoted by cg) and performing forward

propagation (denoted by cf ) to obtain the label of an input
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TABLE VI: Cost analysis of our algorithm.

Dataset cf operator cg n

MNIST

0.7 ms NAI 6.191 s 68.7789
0.5 ms NS 6.336 s 173.0040
0.3 ms WS 7.657 s 107.6702
0.3 ms GF 1.398 s 91.1747

CIFAR10

0.3 ms NAI 16.101 s 69.0873
0.5 ms NS 9.475 s 283.9628
0.4 ms WS 9.251 s 165.6373
0.4 ms GF 11.894 s 127.2767

sample by a DNN model. The total cost of detecting an input

sample is thus C = n · (cg + cf ), where n is the number of

mutants needed to draw a conclusion based on Algorithm 1.

We estimate cf by performing forward propagation for

10000 images on a MNIST and CIFAR10 model respectively.

The detailed results are shown in Tabel VI. Note that cg is

the time used to generate an accurate model (retaining at least

90% accuracy of the original model) and the cost to generate

an arbitrary mutated model is much less. In practice, we could

generate and cache a set of mutated models for the detection

of a set of samples. Given a set of m samples, the total cost for

the detection is reduced to C(m) = m·n·cf+n∗cg . In practice,

our algorithm could detect an input sample within 0.1 second

(with cached models) using a single machine. We remark that

our algorithm can be parallelized easily by evaluating a set

of models at the same time which would reduce the cost

significantly. We thus have the following answer to RQ4.

Answer to RQ4: Our detection algorithm is lightweight
and easy to parallel.

D. Threats to Validity

Firstly, our experiment is based on a limited set of test

subjects so far. Our experience is that the more accurate the

original model and the mutated models are, the more effective

and more efficient our detection algorithm is. The reason is

that the LCR distance between adversarial samples and normal

samples will be larger if the model is more accurate, which

is good for our detection. In some applications, however, the

accuracy of the original models may not be high. Secondly, the

detection algorithm will have some false positives. Since our

detection algorithm is threshold-based, there will be some false

alarms along with the detection. Meanwhile, there is a tradeoff

between avoiding false positives or false negatives as discussed

above (i.e., in the selection of ρ). Thirdly, the detection of

normal samples typically needs more mutations. The reason

is that we choose to test against ςnor since we do not know

ςadv for an unknown attack. Since normal samples have lower

LCR under mutated models in general, they would need more

mutations than adversarial samples to draw a conclusion.

V. RELATED WORKS

This work is related to studies on adversarial sample gen-

eration, detection and prevention. There are several lines of

related work in addition to those discussed above.

a) Adversarial training: The key idea of adversarial

training is to augment training data with adversarial samples

to improve the robustness of the trained DNN itself. Many

attack strategies have been invented recently to effectively

generate adversarial samples like DeepFool [30], FGSM [14],

C&W [8], JSMA [33], black-box attacks [32] and others [39],

[36], [12], [7], [50]. However, adversarial training in general

may overfit to the specific kinds of attacks which generate

the adversarial samples for training [28] and thus can not

guarantee robustness on new kinds of attacks.

b) Adversarial sample detection: Another direction is to

automatically detect those adversarial samples that a DNN

will mis-classify. One way is to train a ‘detector’ subnetwork

from normal samples and adversarial samples [29]. Alternative

detection algorithms are often based on the difference between

how an adversarial sample and a normal sample would behave

in the softmax output [54], [17], [24], [11] or under random

perturbations [46].

c) Model robustness: Different metrics has been pro-

posed in the machine learning community to measure and

provide evidence on the robustness of a target DNN [53],

[48]. Besides, in [34] and the following work [40], [25],

neuron coverage and its extensions are argued to be the

key indicators of the DNN robustness. In [5], Bastani et al.
proposed adversarial frequency and adversarial severity as the

robustness metrics and encode robustness as a linear program.

d) Testing and formal verification: Testing strategies

including white-box [34], [44], black-box [49] and mutation

testing [26] have been proposed to generate adversarial sam-

ples more efficiently for adversarial training. However, testing

can not provide any safety guarantee in general. There are also

attempts to formally verify certain safety properties against the

DNN to provide certain safety guarantees [18], [20], [21], [47].

VI. CONCLUSION

In this work, we propose an approach to detect adversarial

samples for deep neural networks at runtime. Our approach

is based on the evaluated hypothesis that most adversarial

samples are much more sensitive to model mutation than

normal samples in terms of label change rate. We then propose

to detect whether an input sample is likely to be normal or

adversarial by statistically checking the label change rate of

an input sample under model mutation. We show that our

algorithm is both accurate and efficient to detect adversarial

samples by evaluating on MNIST and CIFAR10 datasets.
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