
White-box Fairness Testing through Adversarial Sampling
Peixin Zhang

Zhejiang University
pxzhang94@zju.edu.cn

Jingyi Wang∗
National University of Singapore

wangjy@comp.nus.edu.sg

Jun Sun
Singapore Management University

junsun@smu.edu.sg

Guoliang Dong
Zhejiang University
dgl-prc@zju.edu.cn

Xinyu Wang
Zhejiang University

wangxinyu@zju.edu.cn

Xingen Wang
Zhejiang University
newroot@zju.edu.cn

Jin Song Dong
National University of Singapore

dcsdjs@nus.edu.sg

Ting Dai
Huawei International Pte. Ltd.

daiting2@huawei.com

ABSTRACT
Although deep neural networks (DNNs) have demonstrated aston-
ishing performance in many applications, there are still concerns
on their dependability. One desirable property of DNN for applica-
tions with societal impact is fairness (i.e., non-discrimination). In
this work, we propose a scalable approach for searching individ-
ual discriminatory instances of DNN. Compared with state-of-the-
art methods, our approach only employs lightweight procedures
like gradient computation and clustering, which makes it signifi-
cantly more scalable than existing methods. Experimental results
show that our approach explores the search space more effectively
(9 times) and generates much more individual discriminatory in-
stances (25 times) using much less time (half to 1/7) .

ACM Reference Format:
Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen
Wang, Jin Song Dong, and Ting Dai. 2020. White-box Fairness Testing
through Adversarial Sampling. In 42nd International Conference on Software
Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3377811.3380331

1 INTRODUCTION
Deep neural networks (DNNs) are gradually adopted in a wide
range of applications, including fraud detection [9], facial recog-
nition [22], self-driving [5], and medical diagnosis [27]. Although
DNNs have demonstrated astonishing performance in many ap-
plications, there are still concerns on their dependability. One de-
sirable property of DNN for applications with societal impact is
fairness (i.e., non-discrimination) [18]. Since there are often soci-
etal bias in the training data, the resultant DNNs might introduce
discrimination unintentionally. This has been demonstrated in [25].

∗Corresponding authors: Jingyi Wang and Xinyu Wang.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380331

Discrimination in DNNs is often more ‘hidden’ than that of tradi-
tional decision-making software since it is still an open problem on
how to interpret DNNs. Therefore, it is crucial to have systematical
methods for automatically identifying potential discrimination in a
given DNN.

Various forms of discrimination exist in the machine learning
literature, including but not limited to group discrimination [8]
and individual discrimination [7]. Discrimination is often defined
over a set of protected attributes1, such as age, race, gender and
etc. Intuitively, discrimination happens when a machine learning
model tends to make different decisions for different individuals
(individual discrimination) or subgroups (group discrimination) dif-
ferentiated only by one/multiple protected attributes. Note that the
set of protected attributes is often application-dependent and given
in advance.

In this work, we focus on the problem of developing a system-
atic and scalable approach for generating individual discriminatory
instances for DNNs. Note that it is often insufficient to identify one
instance demonstrating the existence of individual discrimination
in a given DNN. It is desirable to generate as many as possible such
instances so that the DNN can be retrained with the generated in-
stances to reduce discrimination. In the literature, there have been
multiple relevant attempts on the problem [2, 10, 26]. In [10], Gal-
hotra et al. proposed THEMIS to measure the occurrence frequency
of discrimination by randomly sampling each attribute within its
domain and identifying those biased instances. In [26], Udeshi et
al. developed AEQUITAS which consists of a global search and
a local search. That is, AEQUITAS first searches the input space
by random sampling (a.k.a. global search), and then applies local
search based on results of the global search, by perturbing the iden-
tified individual discriminatory instances with selected attributes
along random directions to identify as many as possible instances
evidencing discrimination. In [2], Agarwal et al. proposed a method
called Symbolic Generation, which first generates a local explana-
tion decision tree using an existing method [21] to approximate the
model decision and then performs symbolic execution based on the
decision tree to generate test cases. Like AEQUITAS, it also com-
bines a global search which aims to maximize path coverage based
on the decision tree with a local search which aims to maximize
the number of discriminatory instances.

1We use ‘protected’/‘sensitive’ and ‘attribute’/‘feature’ interchangeably.

949

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

https://doi.org/10.1145/3377811.3380331
https://doi.org/10.1145/3377811.3380331

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang, Jin Song Dong, and Ting Dai

Figure 1: An overview of ADF .

Existing approaches are developed mostly for traditional ma-
chine learning models, i.e., logistic regression, support vector ma-
chine, and decision tree. Although they could be applied to DNN,
experiment results show that their performances on DNN are far
worse than that on traditional models, and are far from being ef-
fective. Furthermore, there are additional shortcomings for each
approach, as we discuss in Section 3.3.

In this work, we propose a scalable gradient-based algorithm
called Adversarial Discrimination F inder (ADF) for generating in-
dividual discriminatory instances, which is specifically designed
for DNN. Gradient is an effective tool to craft test inputs for DNN.
It can be computed efficiently for large DNN and it offers intuitive
guidance on how amodel prediction changes with respect to certain
attributes. It is useful in many DNN related tasks. It is noticeably
used in recent works to generate adversarial samples [12, 13, 19, 20],
i.e., instances which are only slightly difference from some exist-
ing instances in the training set yet result in very different model
prediction. Inspired by these works, we use gradient as an effective
way for searching individual discriminatory instances in DNN.

An overview of ADF is presented in Figure 1. ADF has two parts,
i.e., global generation (i.e., the left part) and local generation (i.e.,
the right part). During global generation, the samples in the origi-
nal dataset are clustered and seed instances from each cluster are
selected in a round-robin fashion. The goal of the global generation
is to increase diversity in the generated individual discriminatory
instance. Gradients are used in the global generation to guide the
crafting of individual discriminatory instances, by maximizing the
difference between the DNN outputs of two similar instances. The
global generation stops if a certain number of individual discrimi-
natory instances have been successfully generated or it times out.
The individual discriminatory instances identified are then taken
as inputs for local generation. The idea is to search neighbors of
the individual discriminatory instances for more discriminatory
instances. Gradients are used in local generation in a different way
as guidance, i.e., we utilize the gradient’s absolute values which

represent the importance of each attribute to identify individual dis-
criminatory instances which are minimally different from the seeds
while maintaining their model predictions. Note that ADF is gen-
erative, i.e., it may generate samples which are not in the original
dataset. In order to make sure the generated instances are valid, a
Clip function is used in both global generation and local generation.

ADF has been implemented as in a self-contained toolkit. Our
experiments on multiple real-word benchmarks show that ADF ex-
plores 8 times more input space and generates 24 times more indi-
vidual discriminatory instances on average than AEQUITAS. Com-
paring with Symbolic Generation, ADF has an average of 324% and
32% higher success rate in global generation and local generation.
Furthermore, ADF is around 2 and 7 times more efficient than AE-
QUITAS and Symbolic Generation. Note that ADF only relies on
lightweight procedures like clustering and gradients, which makes
it much more effective and scalable than existing methods.

In summary, We make the following main contributions.

• We present an efficient and effective approach ADF for gen-
erating individual discriminatory instances of DNN based
on gradient.

• We implement and publish ADF as a self-contained toolkit2
on-line.

• We evaluate ADF with 6 benchmarks on 3 datasets. Our
experiment shows ADF is significantly more effective and
efficient in generating individual discriminatory instances
than state-of-the-art methods.

The remainder of the paper is organized as follows. Section 2
presents the necessary background on individual discrimination
and DNN. In Section 3, we present ADF in detail. In Section 4, we
discuss our experimental setup and our results. We review related
works in Section 5 and conclude in Section 6.

2https://github.com/pxzhang94/ADF

950

White-box Fairness Testing through Adversarial Sampling ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

2 BACKGROUND
In this section, we briefly review relevant background, including
Deep Neural Network (DNN), individual discrimination, gradient-
based adversarial attack, and then define our problem.

DNN. A DNN D often contains an input layer, multiple hid-
den layers and an output layer. We denote these layers as NL =
{NLj |j ∈ {0, . . . , J }} and assume the j-th layer has sj neurons. For
each neuron, it first calculates the weighted sum of the outputs of
all the neurons in its previous layer to get the outputvj,k (as shown
in Equation 1) and then applies an activation function (e.g., Sigmoid,
hyperbolic tangent (tanh), or rectified linear unit (relu) [17]) ϕ.

vj,k = ϕ(

sj−1∑
l=1

ωj−1,k,l · vj−1,l) (1)

In the following, we use θ = {ωj,k |1 ≤ j ≤ J , 0 ≤ k ≤ sj } to
denote the set of parameters of D. In this work, we focus on DNN
classifiers D : X → Y , i.e., for a given instance x ∈ X , a DNN
outputs a predicted label y ∈ Y which has the highest probability.

Individual discrimination. We denote X as a dataset and its set of
attributes byA = {A1,A2, . . . ,An }. Assume each attributeAi has a
valuation domain Ii , the input domain is then I = I1 × I2 × · · · × In ,
which denote all the possible combinations of attribute valuations.
Further, we use P ⊂ A to denote a set of protected attributes like race
and gender and NP to denote the set of non-protected attributes.
A DNN model D trained on X may contain discrimination. In this
work, we focus on individual discrimination.

Definition 2.1. Let x = {x1,x2, . . . ,xn }, where xi is the value of
attribute Ai be an arbitrary instance in I. We say that x is an indi-
vidual discriminatory instance of a model D if there exists another
data instance x ′ ∈ I which satisfies the following conditions:

• ∃p ∈ P , s .t .,xp , x ′p ;
• ∀q ∈ NP ,xq = x ′q ;
• D(x) , D(x ′)

Further, (x ,x ′) is called an individual discriminatory instance pair.

Gradient-based adversarial attack. Deep neural networks are
shown to be vulnerable to adversarial samples [24]. In recent years,
many adversarial attack methods have been proposed to craft ad-
versarial samples, which deliberately perturb the original normal
input subtly and yet able to fool the DNN model. In the following,
we briefly introduce gradient-based adversarial attacks which in-
spire our work. The intuition is to perturb the original input in the
gradient direction so that the DNN will change its output to the
largest extent.
FGSMGoodfellow et al. proposed Fast Gradient SignMethod (FGSM)
which perturbs the original input in the direction of the sign of
the gradient of the DNN’s loss function with respect to the input
features according to the following Equation 2:

xadv = x + ϵ · sign(∇x J (x ,y)), (2)

where J is the loss function of the DNND,y = D(x) is the predicted
class of x , ∇x J (x ,y) is the gradient of J on x with respect to the
labely and ϵ is a hyper-parameter to determine perturbation degree.
FGSM is highly effective and efficient to obtain adversarial samples
in practice.

Later, several other gradient-based attack methods are proposed
to extend FGSM. For instance, instead of attacking only once, Ba-
sic Iterative Method (BIM) [13] employs perturbations based on
gradient multiple times with smaller step size. Another method is
Jacobian-based Saliency Map Attack (JSMA) [19] which only selects
two most important features to perturb according to the saliency
map. We omit the details and remark that they share the same spirit
of utilizing gradient information of a DNN.

Problem definition. A model which suffers from individual dis-
crimination may produce biased decision when an individual dis-
criminatory instance is presented as input. Our problem is thus
defined as follows. Given a dataset X (with a set of attributes A
and a set of protected attributes P) and a DNN model D, how can
we effectively and efficiently generate individual discriminatory
instances for D so that we can retrain a DNN model based on X
and the generated individual discriminatory instances for better
fairness? This problem is challenging because we focus on complex
DNNs which renders existing methods ineffective.

3 METHODOLOGY
In this section, we first present details of our approach ADF and
then a qualitative comparison between our approach and state-of-
the-art approaches.

ADF generates individual discriminatory instances in two phases,
i.e., a global generation phase and a local generation phase. In the
global generation phase, we aim to identify those individual dis-
criminatory instances near the decision boundary from the original
dataset X , which serve as the seed data for the local generation
phase. In the local generation phase, we follow the intuition that
instances nearby those seed data are likely to be individual discrim-
inatory instances to find more of them. Note that this intuition is
inspired by recent research on the robustness of DNNs [24]. In the
following, we introduce the two phases in details.

Example 3.1. We use the Census Income dataset3 as a running
example to illustrate each step of our approach. The Census Income
dataset is published in 1996, which is a commonly used dataset
in the literature of fairness research [2, 4, 10, 11, 26]. The task is
to predict whether the income of an adult is above $50,000 based
on their personal information. The dataset contains 32561 training
instances with 13 attributes each. The following shows a sample
instance x .

x : [4, 0, 6, 6, 0, 1, 2, 1, 1, 0, 0, 40, 100]

Note that all the attributes are category attributes (obtained through
binning). Among the 13 attributes, there are multiple potential
protected attributes, i.e., age, race and gender. In the following, we
assume the protected attribute is gender for simplicity, whose index
in the feature vector is 8 (which is highlighted in red above). There
are only two different values for this attribute, i.e., 0 representing
female and 1 representing male. Given a model trained on the
dataset, if changing 1 to 0 changes the prediction outcome by the
model, we say that x is an individual discriminatory instance for
the model.

3https://archive.ics.uci.edu/ml/datasets/adult

951

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang, Jin Song Dong, and Ting Dai

perturbation region

gradient-guided
perturbation

invalid search found discriminationoriginal input

decision boundary

Figure 2: Intuition of gradient-based approach.

3.1 Global generation
Algorithm 1 shows the details of the global generation phase. The
algorithm uses the following constants: c_num which is the size of
clusters; g_num which is the number of seed instances to generate
during global generation; max_iter which is the number of max-
imum iteration number; and s_g which is the step size of global
generation.

First, we cluster the original dataset using a standard popular
clustering algorithm K-Means [15] at line 2. Afterwards, we obtain
seed instances from each cluster in a round-robin fashion (see line 4).
The goal of clustering is to improve the diversity of the seeds.

In the loop from line 5 to 22, we generate individual discrim-
inatory instances iteratively based on the gradient. Let θ be the
parameters of a DNN D ; y be the ground-truth label associated
with x ; and J (θ ,x ,y) be the loss function used to train the model
D. Given a seed x selected from a cluster (see line 4), we first check
whether it is an individual discriminatory instance according to
Definition 2.1 at line 6. Note that the complexity of the checking is
Θ(N), whereN is the number of all the possible combinations of the
protected features in the corresponding domain. For the running
example 3.1, N = 2. If x is not an individual discriminatory instance,
we start to search for an individual discriminatory instance based
on x with the guidance of the gradient defined as ∇x J (θ ,x ,y).

Notice that in order to identify an individual discriminatory
instance, we need to find an individual discriminatory instance
pair, i.e., a pair of instances which differ only by some protected
attributes and yet have different labels. In other words, given x , we
need to first identify an x ′ which only differs with x in protected
attributes. Since x is not an individual discriminatory instance,
x and x ′ thus has the same label. As shown in Figure 2, we then
utilize gradient information on x and x ′ to offer guidance on how to
perturb (x ,x ′) such that we are most likely to identify an individual
discriminatory instance pair.

We identify a set of instances X from I such that x and any
instance x ′ in X only differs in some protected attributes at line 10.
The goal is to perturb (x ,x ′) such that D(x) , D(x ′). Among all

Algorithm 1 Global Generation
1: g_id = ∅

2: clusters = KMeans(data, c_num)
3: for i from 0 to g_num do
4: Get seed x from clusters in a round-robin fashion
5: for iter from 0 to max_iter do
6: if x is an individual discriminatory input then
7: g_id = g_id ∪ x
8: break
9: end if
10: X = {x ′ |∀x ′p ∈ Ip ,x

′
p , xp }

11: x ′ = argmax{abs(Gy (x ′) − Gy (x))|x
′ ∈ X }

12: дrad = ▽J (x)
13: дrad ′ = ▽J (x ′)
14: Initialize array dir with the same size as A by 0
15: for a ∈ A\P do
16: if siдn(дrada) = siдn(дrad ′a) then
17: dira = siдn(дrada)
18: end if
19: end for
20: x = x + dir ∗ s_д
21: x = Clip(x)
22: end for
23: end for
24: return g_id

instances in X , we choose x ′ according to the following equation:

x
′

= argmax{abs(Gy (x
′

) − Gy (x))|∀x ′

p ∈ Ip ,x
′

p , xp }, (3)

, where G denotes the output vector of D. The intuition is to select
the instance x ′ such that the DNN outputs on x and x ′ are maxi-
mally different. In such a way, after we perturb both x and x ′, it is
likely that the output labels of x and x ′ are different.

Our next step is to perturb x and x ′ to generate an individual dis-
criminatory instance pair (xa ,x ′a) such that D(xa) , D(x ′a). Note
that the perturbation introduced to x and x ′ are always the same
so as to make sure the pair still only differ by protected attributes
after the perturbation. In our running example, since the attributes
are all preprocessed as categorized values, the perturbation is done
by increasing or decreasing its value by 1 unit (i.e., the minimal per-
turbation). A perturbation in our context is thus a function of a set
of non-protected attributes which we choose to perturb and a cor-
responding boolean vector where 1 means increasing the attribute
value by 1 and 0 means decreasing by 1. Formally,

Definition 3.2. PerturbationA perturbation δ on a data instance
x is function δ : I × NP × B → I, where B is the direction of the
perturbation.

Our next question is how to choose the attributes and directions
for perturbation. Notice that to better achieve individual discrim-
ination, we need to maximize the difference between D(xa) and
D(x ′a) after perturbation. Our goal is thus:

argmaxδ (x,x ′){D(xa) − D(x ′a)}, (4)

where xa = δ (x) and x ′a = δ (x ′). Unfortunately, this objective
can not be directly optimized. Our remedy is to adopt the idea of

952

White-box Fairness Testing through Adversarial Sampling ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Algorithm 2 Clip
1: Let x be the input
2: Let I be the input domain
3: for xi ∈ x do
4: xi = max(xi , Ii .min)
5: xi = min(xi , Ii .max)
6: end for
7: return xi

EM algorithm [6] in machine learning to iteratively optimize it.
Here, we utilize the gradient of ▽J (x) − ▽J (x ′) and select those
attributes which have similar contributions (with the same sign of
gradients) as attributes to perturb. The intuition is that perturbing
these attributes can potentially enlarge the output difference since
▽J (x) − ▽J (x ′) equals 0 on them (likely to be local minimum).
Once we find the perturbation, we apply it on x and x ′ and then
check whether the new pair (xa ,x ′a) is an individual discriminatory
instance pair. If the answer is yes, the algorithm will break out
immediately (see line 6-8). Otherwise, we start another round of
perturbation on (xa ,x

′
a). This process may repeat multiple times

until it succeeds. Notice that in order to filter out unreal test inputs,
we always apply a Clip function described at Algorithm 2 to make
sure that each attribute value after perturbation is within its domain
(see line 21).

Example 3.3. For our running example, we cluster the raw train-
ing data into 4 clusters and select seed instances from each cluster
in a round-robin fashion. The first selected seed x is as follows
(shown in Example 3.1), and it is not an individual discriminatory
instance.

x : [4, 0, 6, 6, 0, 1, 2, 1, 1, 0, 0, 40, 100]
We identify all instances which differ from the seed only by pro-
tected attributes, and then obtain the following x ′ which has the
greatest difference in output probability with x .

x ′ : [4, 0, 6, 6, 0, 1, 2, 1, 0, 0, 0, 40, 100]

We then determine the perturbation direction based on the sign of
two instances’ gradients as follows.

direction : [0, 1, 0, 0,−1, 1,−1, 0, 1, 0, 0, 1,−1]

Intuitively, 0 means that the corresponding attribute should not be
changed; −1 means that it should be decreased and 1 means that
it should be increased (to maximize output difference). Next we
perturb x accordingly, and apply the Clip function to filter invalid
values. The result is the the following instance.

x : [4, 1, 6, 6, 0, 2, 1, 1, 1, 0, 0, 41, 39]

Since the last attribute native-country only has 40 countries (and
value 100 means missing value in the original data), it is modified
to 39 (the maximum value) by the Clip function. After checking at
line 6, it is shown to be an individual discriminatory instance.

3.2 Local generation
After the global generation phase, we obtain a set of individual
discriminatory instances as seeds for the local generation phase. The
goal of the local generation phase is to generate as many individual
discriminatory instances as possible based on the seeds, which

are useful for re-training the DNN model. The intuition behind
the design of the local generation is that a well-trained DNN is
likely robust, i.e., if two instances are similar, the same prediction is
likely to be produced by the DNN. We thus are likely to find more
individual discriminatory instances around a given seed individual
discriminatory instance.

Our local generation algorithm has the following parameters:
l_num which is the number of trials in local generation; and s_l
is the step size of local generation. The algorithm makes use of
the gradients of loss (see lines 6-7) in a different way. Recall that
in global generation, we would like to change the DNN output
maximally. On the contrary, in local generation, we would like
to change the output as minimally as possible, as our goal is to
maintain the DNN outputs of the individual discriminatory instance
pairs identified in the global generation so that they remain different.
We thus choose to perturb those attributes which have least effect
on the output. Note that the absolute value of gradient represents
how much an attribute contributes to the output.

Further note that since we are perturbing an individual discrim-
inatory instance pair, we need to consider the two inputs at the
same time (to make sure that neither of them will cross the decision
boundary as otherwise they are no longer an individual discrim-
inatory instance pair). To achieve that, we adopt a normalization
process on the gradients on the two inputs to measure the aver-
age contribution of each attribute on the input pair. The details
are shown in Algorithm 4. We first add the absolute value of two
gradients together to get the saliency value of each attribute (see
line 3). Then we calculate the reciprocal value (see line 4) since we
aim to select the attributes with less contributions to the output and
meanwhile filter out the protected attributes (see lines 5-7). Lastly,
we use a standard normalization function to get the contribution
of each attribute on the input pair (see lines 9-10).

Algorithm 3 shows the details of our local generation algorithm.
Given an individual discriminatory instance pair (x ,x ′) (see line 5),
we start searching by iteratively selecting the attributes to perturb
using the normalization of gradients (see line 8). Instead of mod-
ifying all the attributes with the same sign, we randomly select
the perturbation direction (sign) with a uniform probability [0.5,
0.5]. Similar to global generation, we also utilize the Clip function
(see Algorithm 2) to make sure that the generated test case is real
(see line 12). We check whether the input after perturbation is an
individual discriminatory instance (see line 13) and continue to the
next seed input if the answer is yes. Otherwise, we start another
iteration of local generation (see line 3).

Example 3.4. For our running example, the global generation
phase generates the following individual discriminatory instance
pair.

x : [4, 1, 6, 6, 0, 2, 1, 1, 1, 0, 0, 41, 39]

x ′ : [4, 1, 6, 6, 0, 2, 1, 1, 0, 0, 0, 41, 39]

In the local generation, taking this pair as input, we first calculate
the gradient of these two instances and normalize the sum of them
as individual probability. The result is as follows.

probablity : [0.030, 0.019, 0.057, 0.075, 0.002, 0.009,

0.020, 0.015, 0, 0.002, 0.027, 0.612, 0.131]

953

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang, Jin Song Dong, and Ting Dai

Algorithm 3 Local Generation
1: l_id = ∅

2: for x ∈ д_id do
3: for i from 0 to l_num do
4: X = {x

′

|∀x ′

p ∈ Ip ,x
′

p , xp }

5: ∃x ′

∈ X ,D(x) , D(x
′

)

6: дrad = ▽J (x)

7: дrad
′

= ▽J (x
′

)

8: p = Normalization(дrad,дrad
′

)

9: Select a ∈ A\P with probability pa
10: Select d ∈ [1,−1] with probability [0.5, 0.5]
11: xa = xa + d × s_l
12: x = Clip(x)
13: if x is a individual discriminatory input then
14: l_id = l_id ∪ x
15: end if
16: end for
17: end for
18: return l_id

Algorithm 4 Normalization(gradient1, gradient2)
1: Initialize gradient with the same size of gradient1
2: for i from 0 to gradient.length do
3: saliency = |дradient1i | + |дradient2i |
4: дradienti = 1.0/saliency
5: if Ai ∈ P then
6: дradienti = 0
7: end if
8: end for
9: дradient_sum = sum(дradient)
10: probability = {д/дradient_sum |∀д ∈ дradient}
11: return probability

Based on the above probability, we choose the attribute hours-per-
week (with index 11) and the direction -1 for perturbation. Since
the result instance’s values are all within the respective domains,
the Clip function keeps it the same and the following instance is
identified as a new individual discriminatory instance.

x : [4, 1, 6, 6, 0, 2, 1, 1, 1, 0, 0, 40, 39]

3.3 Qualitative Evaluation
In the following, we evaluate our approach qualitatively by com-
paring it with state-of-the-art approaches, i.e., THEMIS [10], AE-
QUITAS [26] and Symbolic Generation (SG) [2]. Empirical compar-
ison results are presented in Section 4.

THEMIS [10] explores the input domains for all attributes through
random sampling and then checks whether the generated instances
are individual discriminatory instances. AEQUITAS [26] improves
THEMIS by adopting a two-phase generation framework. In the
first phase, AEQUITAS randomly searches for a set of individual
discriminatory instances in the input space as seeds. In the sec-
ond phase, AEQUITAS searches for more individual discriminatory
instances around the seed inputs found in the first phase by ran-
domly adding perturbations on the non-protected attributes. Notice

Table 1: Comparing different approaches.

Feature THEMIS AEQUITAS SG ADF
Guided ✗ ✓(semi) ✓ ✓

Input specific N.A. ✗ ✓ ✓
Lightweight ✓ ✓ ✗ ✓

that the perturbation is guided by a distribution which describes
the probability of finding an individual discriminatory instance
by adding perturbation on a specific non-protected attribute. De-
spite that random sampling is lightweight, THEMIS and AEQUITAS
can miss many combinations of non-protected attributes values
where individual discrimination may exist [2]. The most recent
work SG [2] attempts to solve this problem by systematically ex-
ploring the input space through symbolic execution. The idea is
to first adopt a local model explainer like LIME [21] to construct a
decision tree for approximating the machine learning model. The
result is a decision tree constituted with linear constraints such that
a linear path constraint is associated with any given input. Then,
SG iteratively selects (according to a ranking function), negates the
constraints and uses a symbolic execution solver to generate test
cases according to different path constraints.

To summarize the difference between existing approaches and
ours, we differentiate them using three criteria, i.e., whether the
search (for individual discriminatory instances) is guided, whether
the guided search is specific for an individual input (input-specific),
and whether the procedure adopted is light-weight (and thus likely
scalable). Table 1 shows the summary. Except THEMIS, both AE-
QUITAS and SG generate individual discriminatory instances in
a guided way (either by a distribution or a path constraint). The
difference is that AEQUITAS uses a single distribution for all the
inputs while SG generates path constraints depending on different
inputs. We remark that designing input-specific perturbations is
a more robust way to generate individual discrimination for dif-
ferent kinds of input and thus is important because it is crucial
for removing individual discrimination globally. Lastly, we expect
that approaches based on random sampling like THEMIS and AE-
QUITAS are lightweight while SG is a relatively heavy approach
which requires the help of a local model explainer and a symbolic
execution solver. For the former, it is still an open problem on gener-
ating model explainers in a scalable and accurate way. For the latter,
symbolic execution is known to be less scalable than techniques
like random samples.

Compared to existing approaches, our approach satisfies all the
three criteria. First, our search is guided by gradient, i.e., the per-
turbation is guided towards the decision boundary to accelerate
the discovery of individual discriminatory instances which signif-
icantly reduces the number of attempts needed. The intuition is
visualized in Figure 2. Second, our algorithm generates a specific
gradient-guided search for different inputs, which significantly im-
proves the success rate of individual discrimination generation.
Lastly, our approach is lightweight since obtaining the gradient of
DNN with respect to a given input is cheap which only requires a
back propagation process and is supported by all existing standard
deep learning frameworks like Tensorflow [1], PyTorch and Keras.

954

White-box Fairness Testing through Adversarial Sampling ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 2: Configuration of experiments.

Parameter Value Description
c_num 4 cluster count
max_iter 10 max. iteration of global generation

s_g 1.0 step size of global generation
s_l 1.0 step size of local generation

Table 3: Experimented DNN models.

Dataset Model Accuracy
Census Income Six-layer Fully-connected NN 88.15%
German Credit Six-layer Fully-connected NN 100%
Bank Marketing Six-layer Fully-connected NN 92.26%

Similar to AEQUITAS , our approach also has a global search
phase and a local search phase. The differences are in the details of
both phases. AEQUITAS works by actively maintaining a probabil-
ity distribution t : NP → [0, 1] on NP which represents how likely
perturbing an attribute in NP is likely to successfully generate indi-
vidual discriminatory instances. A limitation of such an approach
is that different attributes of different inputs may contribute differ-
ently to the DNN output and the same global distribution hardly
works for all the inputs. This is clearly evidenced by our experiment
results in Section 4. To solve the problem, our approach takes an
input-specific perspective, i.e., choosing different local perturbation
based on gradient which are specific to a given instance.

4 EXPERIMENT
We have implemented ADF as a self-contained toolkit based on
Tensorflow [1] and scikit-learn. Its source code, together with all
the experiment related details, are available online. In the following,
we evaluate ADF to answer multiple research questions (RQ).

4.1 Experimental Setup
We choose AEQUITAS and SG for baseline comparison. Note that
THEMIS is shown to be significantly less effective [2] and thus
is omitted for comparison. We obtained the implementation of
AEQUITAS from GitHub4 and re-implemented SG according to
the description in [2] since their implementation is not publicly
available. Notice that AEQUITAS proposed 3 different local search
algorithms, we adopted the fully-directed algorithm in our eval-
uation since it has the best performance according to [26]. We
conducted our experiments on a GPU server with 1 Intel Xeon
3.50GHz CPU, 64GB system memory and 1 NVIDIA GTX 1080Ti
GPU. Both AEQUITAS and SG are configured according to the
best performance setting reported in the respective papers. Table 2
shows the value of parameters used in our experiment to run ADF .

We adopt 3 open-source datasets for fairness testing as our ex-
periment subjects. The details of the datasets as follows.

• Census Income The details of this dataset have been intro-
duced in Example 3.1. It is used as a benchmark by AE-
QUITAS and SG [2].

4https://github.com/sakshiudeshi/Aequitas

Table 4: Comparison with AEQUITAS.

Dataset Protected Attr. AEQUITAS ADF
#GDiff #ID #GDiff #ID

census age 56955 6045 491650 256980
census race 54734 4737 344162 139179
census gender 32148 2930 259227 47644
bank age 32870 8949 700285 364758
credit age 99560 38479 398209 233664
credit gender 33137 4996 312919 73497

• GermanCredit5 This is a small dataset with 600 data and 20 at-
tributes. It was used to evaluate several existing works [2, 10].
The attributes age and gender are protected attributes. The
original aim of dataset is to give an assessment of individ-
ual’s credit based on personal and financial records. It is used
as a benchmark by SG [2].

• Bank Marketing6 The dataset came from a Portuguese bank-
ing institution and is used to train models for predicting
whether the client would subscribe a term deposit based on
his/her information. The size of dataset is more than 45,000.
There are a total of 16 attributes and the only protected
attribute is age. It is used as a benchmark by SG [2].

We use the binning method to pre-process the numerical attributes.
The details of the models used in the experiments are shown in
Table 3. Since these datasets are relatively simple, we train models
in the form of fully-connected DNNs and perform clustering based
on the standard K-Means algorithm.

4.2 Research Questions
We aim to answer the following research questions through our
experiments.

RQ1: How effective is our algorithm in finding individual discrimina-
tory instance?
We first compare ADF with AEQUITAS. Since AEQUITAS and ADF
both have a global generation phase and a local generation phase,
we conduct a detailed comparison for both phases. For both of
them, we generate 1000 instances in the global generation phase
(except for credit data, which is set to be 600 due to its small size),
and then generate 1000 instances during local generation for each
successfully identified individual discriminatory instance in the
global phase.

The details of the comparison are presented in Table 4. Note
that the maximum number of the two-phase searched instances
is thus 1001000 (1000 global and 1000000 local instances). We fur-
ther filter out duplicate instances. Column #GDiff is the number
of non-duplicate instances generated after the two-phase search.
Column #ID shows the number of individual discriminatory in-
stances identified. It can be observed that ADF is significantly more
effective than AEQUITAS in finding individual discriminatory in-
stances. On average, ADF generates 8.6 times more non-duplicate
instances. One of the reasons why AEQUITAS explores a much

5https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
6https://archive.ics.uci.edu/ml/datasets/bank+marketing

955

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang, Jin Song Dong, and Ting Dai

Table 5: Comparison with SG in 500 seconds.

Dataset Protected Attr. SG ADF
#GDiff #ID #GDiff #ID

census age 1290 544 8202 3453
census race 1541 632 10677 4290
census gender 1482 280 22977 4164
bank age 1385 842 5911 3587
credit age 2752 1574 5771 3923
credit gender 3202 926 14711 4091

Table 6: Number of individual discriminatory instances gen-
erated by global generation.

Dataset Protected Attr. AEQUITAS SG ADF
census age 101 291 658
census race 95 139 456
census gender 37 54 334
bank age 43 142 872
credit age 175 247 594
credit gender 47 87 451

smaller space is that it often generates duplicate instances (as was
observed in [2]) since a global sampling distribution is used for all
the inputs, while ADF perturbs a specific input according to the
guidance of an instance-specific gradient. More importantly, ADF
generated nearly 25 times more individual discriminatory instances
on average. A close investigation shows that the reason is that gra-
dient provides a much better guidance in identifying individual
discriminatory instances. This is clearly evidenced by the average
success rate which is calculated by #ID / #GDiff. AEQUITAS has a
success rate of 18.22%, whereas ADF achieves a success rate of 40.89%,
which is more than 2 times of that of AEQUITAS.

Although SG similarly has two phases, it works differently from
ADF or AEQUITAS. That is, SG maintains a priority queue, pops
an instance and apply global search iteratively. If the instance is
an individual discriminatory instance, local search is employed.
Afterwards, all the search results are pushed into the queue without
checking whether they are discriminatory or not. As a result, it
is infeasible to directly compare SG and ADF as above. Thus, we
apply an overall evaluation between ADF and SG with the same
time limit, i.e., 500 s. The results are shown in Table 5. We observe
that on average:ADF 1) explores 6.6 times more instances, 2) generates
6.5 times more individual discriminatory instances and 3) has 42.8%
success rate (whereas SG has a success rate of 41.5%). One thing to
notice is that our method beats SG which is based on a symbolic
solver even in terms of success rate. One possible explanation is that
the model explainer SG utilized is far from accurate for complex
models like DNN.

In addition to the above overall evaluation with two baselines,
we further conduct a comprehensive comparison phase by phase,
i.e., global generation and local generation.
Global Generation The goal of global generation is to identify diver-
sified individual discriminatory instances. For a fair comparison,
we generates 1000 instances in global generation (except for credit

Table 7: Number of individual discriminatory instances gen-
erated by local generation.

Dataset Protected Attr. AEQUITAS SG ADF
census age 216 422 598
census race 153 371 526
census gender 189 210 321
bank age 221 634 708
credit age 448 600 750
credit gender 142 280 337

data, which is set to be 600), and count how many individual dis-
criminatory instances are identified by each method in this stage.
Note that the same seed instances are used for SG and ADF.

The results are shown in Table 6. It can be observed that ADF
generates the most number of individual discriminatory instances,
with an average improvement of 794% and 324% when it is compared
with AEQUITAS and SG respectively. We take that this shows the
effectiveness of guiding the search based on gradient during global
generation.

Local Generation Local generation aims to further craft more in-
dividual discriminatory instances based on the results of global
generation. To make a fair comparison between the three strategies
for local generation, we seed each method with the same set of
individual discriminatory instances and apply the three strategies
to generate 1000 instances for each seed. This way we are able
to properly evaluate the local generation strategies without being
influenced by the results of the global generation adopted by the
three methods.

The results are shown in Table 7. It can be observed that the
local generation strategy of our method ADF performs the best
among the three. Specifically, ADF generates 153% more individual
discriminatory instances than AEQUITAS, and 32% more than SG on
average.

Recall that AEQUITAS and ADF both guide local generation
through a probability distribution which intuitively is the likeli-
hood of identifying individual discriminatory instances by changing
certain attributes. The difference is that AEQUITAS’s probability is
global, i.e., the same probability is used for all instances, whereas
ADF’s probability is based on gradient and thus specific to certain
instance. We conduct a further experiment to evaluate whether
ADF’s approach is more effective or not. We feed these approach
the same set of seed instances and then measure the relationship
between the number of seed instances explored and the number of
new individual discriminatory instances identified.

The result is shown in Figure 3 where the x-axis is the number
of seeds explored; the blue line represents the number of instances
generated and the red line represents the number of individual
discriminatory instances identified. It can be observed that for ADF,
both lines grow steadily with the number of seeds explored, which
suggests that the instance-specific probability used in ADF works
reliably. In comparison, the increase of both the number of instances
and the number of individual discriminatory instances drops with
an increasing number of seeds for AEQUITAS. This is possibly

956

White-box Fairness Testing through Adversarial Sampling ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

AEQUITAS

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

30
7

32
4

Individual	Discriminatory	Instances Inputs	Generated

ADF

0

50000

100000

150000

200000

250000

300000

1 19 37 55 73 91 10
9

12
7

14
5

16
3

18
1

19
9

21
7

23
5

25
3

27
1

28
9

30
7

32
5

Individual	Discriminatory	Instances Inputs	Generated

Figure 3: Effectiveness of local generation.

due to the ineffective global probability and the duplication in the
generated instances.

We thus have the following answer to RQ1:

Answer to RQ1: ADF outperforms the state-of-the-art methods
AEQUITAS and SG. Compared to AEQUITAS, ADF searches 9.6
times input space, generates 25 times individual discriminatory
instances and has more than 2 times success rate. Compared
to SG, ADF searches 6.6 times input space and generates 6.5
individual discriminatory instances and has a slightly higher
success rate given same time limit. Gradient provides effective
guidance during both global generation and local generation.

RQ2: How efficient is our algorithm in finding individual discrimina-
tory instances?
Besides effectiveness, efficiency is also important. We thus conduct
an experiment to compare the efficiency of these three approaches.
Table 8 presents howmuch time eachmethod takes to generate 1000
individual discriminatory instances. Note that for all methods we
measure the total time. For SG, it includes the time for generating
the explanation model and constraint solving.

Table 8: Time (s) taken to generate 1000 individual discrimi-
natory instances.

Dataset Protected Attr. AEQUITAS SG ADF
census age 172.64 720.49 59.15
census race 128.75 506.33 65.95
census gender 158.37 2128.42 78.68
bank age 191.16 521.79 106.93
credit age 176.31 321.63 64.92
credit gender 156.22 476.52 102.90

Table 9: Number of iteration for global generation in ADF.

Dataset Protected Attr. ADF
census age 4.415 (1.530)
census race 6.427 (2.268)
census gender 7.759 (3.451)
bank age 2.859 (1.811)
credit age 1.479 (1.310)
credit gender 5.295 (3.741)

It is evident that ADF has the best performance. On average, it
takes only 48.97% and 14.53% of the time required by AEQUITAS and
SG respectively. Combined with the results shown in Figure 4, it
implies that AEQUITAS and ADF have similar efficiency in gener-
ating instances (and ADF has much higher success rate in finding
individual discriminatory instances). Considering that AEQUITAS
performs random sampling whereas ADF requires to calculate the
gradient, it suggests that the overhead of calculating gradient in
ADF is negligible. SG takes significantly more time to generate in-
stances based on a seed instance. Its efficiency is thus much worse,
as expected. To further understand the time cost in the global gen-
eration phase of ADF, we utilize 1000 seed instances (600 for credit
data) to calculate the average number of iterations needed to iden-
tify an individual discriminatory instance and present the results
in Table 9. The numbers A(B) in the table means that, on average
it takes A iterations for all the instances (with the maximum itera-
tion set to 10) and B iterations for successfully identified individual
discriminatory instances. We could observe that for successfully
identified individual discriminatory instances, it often requires few
iterations (around 2 on average), which suggests that the main cost
is on those unsuccessful search (10 iterations). The implication is
that we could further improve the efficiency of ADF by choosing
an appropriatemax_iter for different applications.

We thus have the following answer to RQ2:

Answer to RQ2: ADF is more efficient than AEQUITAS and SG in
generating individual discriminatory instances, with an average
speedup of 104% and 588%.

RQ3: How useful are the identified individual discriminatory instances
for improving the fairness of the DNN?
To further show the usefulness of our generated individual discrimi-
natory instances, we evaluate whether we can improve the fairness
of the DNN model by retraining it with data augmented with the

957

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang, Jin Song Dong, and Ting Dai

Table 10: Fairness improvement.

Dataset Prot. Attr. Before (%) After (%)
AEQUITAS SG ADF

census age 10.88 4.03 2.41 2.26
census race 9.75 7.05 6.89 6.15
census gender 3.14 2.33 1.90 1.65
bank age 4.60 1.68 2.04 1.19
credit age 27.93 13.91 13.19 12.05
credit gender 7.68 4.58 4.66 3.93

generated individual discriminatory instances. We remark that AE-
QUITAS also uses retraining to improve the fairness of the original
models and SG does not have such discussions. Further note that
we label the generated individual discriminatory instances using
the idea of majority voting [14, 26] from decisions of multiple mod-
els (which can be obtained by model mutation [16, 28] or training
multiple models). Besides, we need a systematic way of evaluat-
ing the fairness of a given model. For this, we adopt the method
proposed and used by AEQUITAS [26]. The idea is to randomly
sample a large set of instances and evaluate the model fairness by
the percentage of individual discriminatory instances in the set.

The results are shown in Table 10, where column Before and
After are the estimated fairness of the model before and after re-
training using the generated discriminatory instances. The smaller
the number is, the more fair the model is. Since we randomly select
5% of generated individual discriminatory instances for data aug-
mentation and retraining, we repeated the procedure 5 times and
present the average improvement to avoid the effect of randomness.
It can be observed that retraining with the individual discriminatory
instances can significantly improve the model fairness, and ADF
achieves better fairness improvement (with more identified individ-
ual discriminatory instances), i.e., 57.2% on average, versus existing
approaches, i.e., 45.1% for AEQUITAS and 49.1% for SG.

We thus have the following answer to RQ3:

Answer to RQ3: The individual discriminatory instances gen-
erated by ADF are useful to improve the fairness of the DNN
through retraining, i.e., with an average improvement of 57.2%.

4.3 Threats to Validity
Limited datasets We evaluated ADF with only 3 datasets. Although
they are the most common public benchmarks used in the fair-
ness testing literature, we cannot conclude the effectiveness and
efficiency on other datasets. It is however easy to extend our evalu-
ation if additional datasets are available in the future since ADF is
dataset-independent and has been made available online.

Limited model structures We only used the basic fully-connected
deep neural networks in the experiments since the data is relatively
simple (i.e., with a maximum of 20 features). However, the key idea
of ADF is generic which can be easily implemented for more com-
plex neural networks like convolutional neural networks (CNNs),
as it is shown that gradient works well for generating adversarial
samples of CNN [12, 13, 19].

Access to model ADF is a white-box algorithm which generates
individual discriminatory instances based on gradient with regard
to the loss function used for training, which means it needs access
to the model. It is widely accepted that DNN testing could have the
full knowledge of the target model.

Step-size parameters The step-size parameters of ADF depend on
the training dataset. For datasets with only categorized attributes
(like the ones we tested in our experiments), it is easy to set it
to be 1. For other datasets, further research may be necessary to
identify an effective step-size. If the step-size is too big, it may miss
some individual discriminatory instance during its perturbation,
especially for local generation. If the step-size is too small, it is hard
to generate individual discriminatory instance in global generation.

5 RELATEDWORK
Fairness testing. This work is closely related to fairness testing of

machine learning models. Galhotra et al. proposed THEMIS [3, 10]
which firstly defines software fairness testing, then introduces fair-
ness scores as measurement metrics, and lastly designs a causality-
based algorithm utilizing the random test input generation tech-
nique to evaluate the model fairness, i.e., the frequency of indi-
vidual discriminatory instances’ occurrence of software. However,
THEMIS is inefficient in general since it relies on random sampling
without guidance on the generation. Udeshi et al. proposed AE-
QUITAS [26] which inherits and improves THEMIS, and focuses
on the individual discriminatory instance generation. AEQUITAS
is a systematic generating algorithm. It first explores the input do-
main randomly to discover individual discriminatory instances in
the global search phase. During the local generation, AEQUITAS
searches the neighbors of individual discriminatory instances iden-
tified in the global phase, by perturbing them. For local generation,
AEQUITAS designs three different strategies, i.e., random, semi-
directed, and fully-directed, to update the probability which is used
to guide the selection of attributes to perturb. Based on their evalua-
tion, fully-directed has the best effectiveness and efficiency. Besides
searching the individual discriminatory instances, AEQUITAS also
design an automated iterative retraining method to obtain a more
fair model. Later, Agarwal et al. proposed Symbolic Generation
(SG) [2] which integrates symbolic execution and local model expla-
nation techniques to craft individual discriminatory instances. SG
relies on the local explanation of a given input which constructs a
decision tree utilizing the samples generated randomly by the Local
Interpretable Model-agnostic Explanation (LIME) [21]. The path
of the tree determines all the important attributes leading to the
prediction. The algorithm also contains a global generation phase
and a local generation phase. A detailed comparison between ADF
and the above approaches are presented in Section 3.3.

Gradient-based attacks. This work is also related to research on
gradient-based adversarial attacks. A variety of works have been
proposed to explore the vulnerability of DNN by crafting adver-
sarial samples. Gradient-based adversarial attack is one kind of
most effective method. Goodfellow et al. proposed the first attack-
ing algorithm Fast Gradient Sign Method (FGSM) [12] to generate

958

White-box Fairness Testing through Adversarial Sampling ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

adversarial samples by perturbing the original input with the lin-
earization of the loss function used in training process. FGSM is
fast by only attacking once according to the gradient. Later, several
other attack methods are proposed to extend FGSM. For instance,
instead of attacking only once, Basic Iterative Method (BIM) [13]
employs perturbations based on gradients multiple times (often
with smaller step sizes), and applies a function which performs
per-attribute clipping to make sure the sample after each iteration
is located in the neighborhood of the original sample. Papernot et
al. introduced Jacobian-based Saliency Map Attack (JSMA) [19], an
iterative targeted attack method, which attempts to force the DNN
model to output the attacker-desired label with minimal perturba-
tion by utilizing the backward derivative (gradient). It works by 1)
first collecting the saliency map [23] based on the Jacobian matrix,
and 2) selecting a pair of features which would cause the most sig-
nificant change on the desired class, followed by 3) increasing the
value of the selected two features to the maximum, lastly 4) repeat
the above three steps until either the number of features perturbed
exceeds the bound or achieving a successful adversarial sample.
Besides, Pei et al. [20] designed an algorithm for maximizing the
coverage of neurons as well as model outputs of multiple DNNs,
and solve the optimization function using gradient.

6 CONCLUSION
In this paper, we propose a lightweight algorithm ADF to efficiently
generate individual discriminatory instances for deep neural net-
work through adversarial sampling. Our algorithm combines a
global phase and a local phase to systematically search the input
space for individual discriminatory instances with the guidance of
gradient. In the global generation, ADF first locates the individual
discriminatory instances near the decision boundary by iteratively
perturbing towards the decision boundary. In the local genera-
tion, ADF again samples according to the gradient to search the
neighborhood of a found individual discriminatory instance. We
compare ADF with two state-of-the-art fairness testing methods in
6 benchmarks, the results show that ADF has significantly better
performance both in terms of effectiveness and efficiency.

ACKNOWLEDGMENTS
This researchwas supported byNSFC Program (Grant No. 61972339).
This research was also supported by Huawei (Grant No. MG19C08),
the Guangdong Science and Technology Department (Grant No.
2018B010107004), the National Research Foundation, Prime Minis-
ter’s Office, Singapore under its Corporate Laboratory@University
Scheme, National University of Singapore, and Singapore Telecom-
munications Ltd and under its National Cybersecurity R&D Pro-
gram (Award No. NRF2014NCR-NCR001-30).

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A System for Large-scale Machine Learning. In 12th Symposium
on Operating Systems Design and Implementation. 265–283.

[2] Aniya Agarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha.
2018. Automated Test Generation to Detect Individual Discrimination in AI
Models. CoRR (2018). http://arxiv.org/abs/1809.03260

[3] Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2018. Themis:
automatically testing software for discrimination. In Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/SIGSOFT FSE 2018), Lake Buena
Vista, FL, USA. 871–875. https://doi.org/10.1145/3236024.3264590

[4] Alex Beutel, Jilin Chen, Zhe Zhao, and Ed H. Chi. 2017. Data Decisions and
Theoretical Implications whenAdversarially Learning Fair Representations. CoRR
(2017). http://arxiv.org/abs/1707.00075

[5] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning for
Self-Driving Cars. CoRR (2016). http://arxiv.org/abs/1604.07316

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society.
Series B (Methodological) 39, 1 (1977), 1–38. https://www.jstor.org/stable/2984875

[7] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S.
Zemel. 2012. Fairness through Awareness. In Innovations in Theoretical Computer
Science 2012, Cambridge, MA, USA. 214–226. https://doi.org/10.1145/2090236.
2090255

[8] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and
Suresh Venkatasubramanian. 2015. Certifying and Removing Disparate Impact.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Sydney, NSW, Australia. 259–268. https://doi.org/10.
1145/2783258.2783311

[9] Kang Fu, Dawei Cheng, Yi Tu, and Liqing Zhang. 2016. Credit Card Fraud
Detection Using Convolutional Neural Networks. InNeural Information Processing
- 23rd International Conference (ICONIP 2016), Kyoto, Japan. 483–490. https:
//doi.org/10.1007/978-3-319-46675-0_53

[10] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness Testing:
Testing Software for Discrimination. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2017), Paderborn, Germany.
498–510. https://doi.org/10.1145/3106237.3106277

[11] Gabriel Goh, Andrew Cotter, Maya R. Gupta, and Michael P. Friedlander. 2016.
Satisfying Real-world Goals with Dataset Constraints. In Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, Barcelona, Spain. 2415–2423. http://papers.nips.cc/
paper/6316-satisfying-real-world-goals-with-dataset-constraints

[12] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In 3rd International Conference on Learning
Representations.

[13] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial Examples
in the Physical World. In 5th International Conference on Learning Representations
(ICLR 2017), Toulon, France. https://openreview.net/forum?id=HJGU3Rodl

[14] Louisa Lam and Ching Y. Suen. 1997. Application of Majority Voting to Pattern
Recognition: An Analysis of Its Behavior and Performance. IEEE Trans. Systems,
Man, and Cybernetics, Part A 27, 5 (1997), 553–568. https://doi.org/10.1109/3468.
618255

[15] Stuart P. Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Information
Theory 28, 2 (1982), 129–136. https://doi.org/10.1109/TIT.1982.1056489

[16] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie,
Li Li, Yang Liu, Jianjun Zhao, et al. 2018. DeepMutation: Mutation Testing of
Deep Learning Systems. In 29th International Symposium on Software Reliability
Engineering. 100–111.

[17] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. In Proceedings of the 27th International Confer-
ence on Machine Learning (ICML 2010), Haifa, Israel. 807–814. https://icml.cc/
Conferences/2010/papers/432.pdf

[18] High-Level Expert Group on Artificial Intelligence (AI HLEG). 2018. Draft Ethics
Guidelines for Trustworthy AI. Technical Report. European Commission.

[19] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. 2016. The Limitations of Deep Learning in Adver-
sarial Settings. In European Symposium on Security and Privacy. 372–387.

[20] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 1–18.

[21] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA. 1135–1144. https://doi.org/10.1145/2939672.
2939778

[22] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A
Unified Embedding for Face Recognition and Clustering. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2015), Boston, MA, USA. 815–823.
https://doi.org/10.1109/CVPR.2015.7298682

[23] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014. Deep Inside
Convolutional Networks: Visualising Image Classification Models and Saliency
Maps. In 2nd International Conference on Learning Representations (ICLR 2014),
Banff, AB, Canada. http://arxiv.org/abs/1312.6034

[24] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing Properties of Neural Networks.
In 2nd International Conference on Learning Representations (ICLR 2014), Banff,

959

http://arxiv.org/abs/1809.03260
https://doi.org/10.1145/3236024.3264590
http://arxiv.org/abs/1707.00075
http://arxiv.org/abs/1604.07316
https://www.jstor.org/stable/2984875
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1007/978-3-319-46675-0_53
https://doi.org/10.1007/978-3-319-46675-0_53
https://doi.org/10.1145/3106237.3106277
http://papers.nips.cc/paper/6316-satisfying-real-world-goals-with-dataset-constraints
http://papers.nips.cc/paper/6316-satisfying-real-world-goals-with-dataset-constraints
https://openreview.net/forum?id=HJGU3Rodl
https://doi.org/10.1109/3468.618255
https://doi.org/10.1109/3468.618255
https://doi.org/10.1109/TIT.1982.1056489
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1109/CVPR.2015.7298682
http://arxiv.org/abs/1312.6034

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang, Jin Song Dong, and Ting Dai

AB, Canada. http://arxiv.org/abs/1312.6199
[25] Florian Tramèr, Vaggelis Atlidakis, Roxana Geambasu, Daniel J. Hsu, Jean-Pierre

Hubaux, Mathias Humbert, Ari Juels, and Huang Lin. 2017. FairTest: Discovering
Unwarranted Associations in Data-Driven Applications. In 2017 IEEE European
Symposium on Security and Privacy (EuroS&P 2017), Paris, France. 401–416. https:
//doi.org/10.1109/EuroSP.2017.29

[26] Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. 2018. Automated
Directed Fairness Testing. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE 2018), Montpellier, France.
98–108. https://doi.org/10.1145/3238147.3238165

[27] Sandra Vieira, Walter H.L. Pinaya, and Andrea Mechelli. 2017. Using Deep Learn-
ing to Investigate the Neuroimaging Correlates of Psychiatric and Neurological
Disorders: Methods and Applications. Neuroscience & Biobehavioral Reviews 74
(2017), 58–75. https://doi.org/10.1016/j.neubiorev.2017.01.002

[28] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019.
Adversarial Sample Detection for Deep Neural Network through Model Mutation
Testing. In Proceedings of the 41st International Conference on Software Engineering
(ICSE 2019), Montreal, QC, Canada. 1245–1256. https://dl.acm.org/citation.cfm?
id=3339661

960

http://arxiv.org/abs/1312.6199
https://doi.org/10.1109/EuroSP.2017.29
https://doi.org/10.1109/EuroSP.2017.29
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1016/j.neubiorev.2017.01.002
https://dl.acm.org/citation.cfm?id=3339661
https://dl.acm.org/citation.cfm?id=3339661

