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Abstract. It has been shown that deep neural networks (DNN) are intrinsically
subject to attacks through adversarial samples, which could be easily generated
in different ways. As DNN are increasingly used in safety-critical systems like
self-driving cars or face recognition, it is crucial to develop efficient techniques for
defending against such attacks. Many existing defenses like adversarial training
and robust training have been shown to be either ineffective or intractable. An
alternative approach is to detect adversarial samples at runtime and reject them
to avoid bad decisions. In this work, we first observe that if we randomly sample
around a normal and an adversarial sample respectively, there is a significant
difference between their Label Change Rate (LCR) over the new samples. We
further provide a theoretical analysis on such a difference, and design a lightweight
detection algorithm based on statistical model checking called nMutant (inspired
by mutation testing). Our experiments show that LCR is significantly more effec-
tive (i.e., close to a perfect classifier) and efficient (such that it can be potentially
employed at runtime) than state-of-the-art approaches in detecting adversarial
samples generated by recently proposed attacking methods.

Keywords: Deep Neural Networks · Adversarial Attack · Detection ·Mutation
Testing.

1 Introduction

Deep Neural Networks (DNN) have been extensively used in a wide range of applications
in recent years. However, it has been shown that DNN are intrinsically subject to
adversarial attacks where even a well-trained DNN can be vulnerable [33]. This is
especially the case when DNN are applied to classification tasks [10,23]. Many methods
of attacking have been invented to generate such adversarial samples, e.g., Fast Gradient
Sign method [10] and its variants [23], Jacobian-based saliency map approach [26], C&W
attack [6] and Black-box attack [25]. Besides different kinds of attacks, multiple DNN
testing approaches are also found effective to identify adversarial samples [34,28,36].
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Fig. 1: Label change via perturbation on a normal sample (left) and an adversarial sample
(right).

Adversarial samples are created with the intent to trigger errors of the DNN. They
are often crafted through careful adversarial perturbation, i.e., manipulating the original
sample with minor perturbations so that the DNN model classifies the sample incorrectly.
As DNN are increasingly used in safety-critical systems like self-driving cars [4] or
face recognition [30], it is crucial to develop efficient techniques for defending against
such attacks to avoid serious accidents [1,2]. So far, multiple defense strategies have
been proposed to improve the robustness of DNN. For instance, adversarial training
approaches [12,31,32] take adversarial samples into consideration during model training
to make it more challenging for attackers to craft adversarial samples, which however
relies on the available adversarial samples and thus are usually limited to defending
existing attacks. As a step further, robust training approaches try to consider all the
possible perturbations on the original training sample during model training by solving a
MinMax optimization problem approximately [31,20], which is computationally expen-
sive and not scalable to large DNN. Worse yet, the above-mentioned defenses provide
no guarantee if the DNN is faced with a new unknown attack. Another promising way
is to formally verifying DNN to provide guarantee on the robustness of a DNN over
adversarial perturbations. Both approaches based on SMT solver [14,35] or abstract
interpretation [9] have been able to prove safety properties in some real-world problems.
However, these verification approaches are still far from real-time applications. Further-
more, they can usually only prove pointwise safety around a small region and are not
able to handle the cases where verification fails .

Due to the inherent difficulty of adversarial defense, we propose a complementary
approach to ensure the safe functioning of DNN by detecting adversarial samples
at runtime and rejecting them to avoid bad decisions (or raise an alarm for further
check). Our approach is lightweight which can be deployed as runtime monitors for
real-time safety assurance. The main intuition behind our approach is that adversarial
samples are much more sensitive to random perturbations than normal samples (i.e.,
those which are correctly labeled by the DNN). We further propose a new feature to
measure such a sensitivity, i.e., Label Change Rate (LCR). That is, the probability of
obtaining a different label by imposing random perturbations to an adversarial sample
is significantly higher than that of imposing random perturbations to a normal sample.
This is illustrated in Fig. 1, i.e., the probability of the scenario illustrated on the right
happening is significantly larger than that of the scenario illustrated on the left happening.
We then explain this observation through a theoretical analysis of LCR. We confirm
our observation and analysis through an empirical study with standard datasets and
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recently proposed adversarial perturbation methods. Based on the difference of LCR on
normal and adversarial samples, we then propose the method for detecting adversarial
samples based on hypothesis testing [17,3]. The basic idea is to measure the LCR of a
provided sample and reject the sample if the LCR is above a certain threshold. Through
expenrimental evaluation on broadly adopted datasets in the area, we show that our
approach is more effective and efficient than several state-of-the-art detection methods
against many existing attacking methods (e.g., FGSM [10], C&W [6], JSMA [26], and
BlackBox [25]). Furthermore, compared to state-of-the-art detection methods which
require the full knowledge of the DNN and a set of adversarial samples (to train a
classifier), our approach works in a black-box setting and does not rely on any adversarial
samples. It implies that our approach can be potentially applied to a wider range of
systems and generalizes to deal with new unknown attacks.

We frame the rest of the paper as follows. We review necessary background and
formally define our adversarial sample detection problem in Section 2. Our observation
and the theoretical analysis are presented in Section 3. We present our detection algorithm
in Section 4 and experiment results in Section 5. Lastly, we discuss related works in
Section 6 and conclude in Section 7.

2 Background

We review necessary background to understand this work in this section.

Deep Neural Networks In this work, we focus on DNN for classification tasks which
outputs a label given a certain input sample. For instance, a commonly-used Convo-
lutional Neural Network (CNN) for image classification is typically concatenated by
convolutional layers with ReLU activation functions, max-pooling layers and fully con-
nected layers. In this work, we assume that we do not have any knowledge of f other
than that we can obtain its output (i.e., the label) given a certain sample. We denote the
target DNN by f(X) : X → C, where X is the set of input samples and C is the set of
output labels. Given a sample x, we denote its true label (ground-truth label obtained by
human observer) by cx. We say that a sample x is a normal sample if f(x) = cx and is
an adversarial sample if f(x) 6= cx. Notice that according to our definition, a sample in
the training or testing data which is wrongly-labeled is also an adversarial sample.

Adversarial Attacks Many approaches have been proposed to craft adversarial samples.
In the following, we briefly introduce the 4 kinds of state-of-the-art attacking methods
used in our experiment. More review of the attacking methods can be found in Section 6.

FGSM: The Fast Gradient Sign Method (FGSM) [10] aims to attack the original input
by changing the softmax value of its original label to the largest extent, which could be
obtained by its gradient. FGSM could be implemented in a straightforward and efficient
way. By simply adding up the sign of gradient (cost function with respect to the input),
we could get a potential adversarial counterpart of a normal sample in one step:

x̂ = x+ εsign(∇J(θ, x, cx))
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, where J is the cost used to train the model and θ is the parameter. Notice that FGSM
does not guarantee the adversarial perturbation is minimal.

JSMA: Jacobian-based Saliency Map Attack(JSMA) [27] is a targeted attack method
which iteratively changes one most significant pixel during each iteration towards the
target label. The selection of the pixel is based on the calculation of a saliency map
which characterizes the impact that each pixel imposes on the target label. The algorithm
picks the most significant pixel each time and maximizes its value. The process is re-
peated until it either reaches the target label or the number of pixels modified exceeds
a certain threshold. We refer the readers to [27] for details of calculating the saliency map.

C&W: Carlini et al. [6] proposed to directly solve an optimization problem which
minimizes the perturbation (with certain distance metric) and maximizes the probability
of the target class label with objective function formulated as follow:

argmin∆x+ c · f(x̂, t)

where ∆x is the imposed perturbation according to some distance metric, e.g., L0, L2,
L∞, x̂ = x+∆x is the clipped adversarial sample and t is its target label. The idea is
to devise a clip function for the adversarial sample such that the value of each pixel dose
not exceed the legal range. The clip function and the best loss function according to [6]
are shown as follows.

clip :x̂ =0.5(tanh(x̃) + 1)

loss :f(x̂, t) =max(max{G(x̂)c : c 6= t} −G(x̂)t, 0)

where G(x) denotes the output vector of a model and t is the target class. Readers can
refer to [6] for details.

Black-Box: The above mentioned attacks are white-box attacks which require the full
knowledge of the DNN model. Black-Box (BB) attack only needs to know the output of
a target DNN model given a certain input sample. The idea is to train a substitute model
to mimic the behaviors of the targeted model with data augmentation. Then, one of the
existing attack algorithms, e.g., FGSM and JSMA, is applied on the substitute model
to generate adversarial samples. The key insight is that the adversarial samples transfer
between different model architectures [33,10].

Problem definition Our problem is then, given a sample x and the DNN f (without
access to the details of f other than obtaining the label f(x)), how can we effectively and
efficiently determine whether x is a normal sample or an adversarial sample? Can we
provide some confidence for the detection result as well? Once we detect an adversarial
sample at runtime, we can take different actions like raising an alarm or simply rejecting
the sample depending on specific applications to ensure the safe use of the DNN.

3 Mutation Testing Effect

In this section, we present our observation on the difference of a normal sample and
an adversarial sample by mutation testing (generating mutations by imposing random
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perturbations) w.r.t. Label Change Rate (LCR). Given an arbitrary sample x for a DNN,
we obtain a set of its mutations Xm(x), each of which xm = x +∆x is obtained by
imposing a minor perturbation ∆x on x. We remark that there are different metrics like
L1, L2 or L∞ norms to measure how close a mutation is from the original input. For
instance, the L∞ norm is the maximum distance between each dimension of x and xm.

We consider a black-box setting, i.e., for every mutation xm ∈ Xm(x), we can only
obtain its output label f(xm) by feeding xm into the DNN without having access to
the details of f . If we have a robust classifier f , for most of the mutations in Xm(x),
f(xm) should be the same as f(x) since we are imposing a small and label-preserving
(to humans) perturbation on x. However, a label change might occur as demonstrated in
previous works [33,10,16]. An example of label change is illustrated in Figure 1. The
left figure takes a normal ‘cat’ image as input and the DNN correctly classifies it as a
‘cat’. After imposing some small perturbation, the DNN labels it as a ‘dog’. The right
figure however takes an adversarial ‘cat’ image (which could be either due to adversarial
perturbation or training error) as input and the DNN wrongly labels it as a ‘dog’. Then,
after imposing some small perturbation, the DNN labels it as a ‘cat’. We formally define
the label change rate (LCR) of a sample x to perturbations as follows:

κ(x) =
|{xm|xm ∈ Xm(x) ∧ f(xm) 6= f(x)}|

|Xm(x)|

, where |S| is the number of elements in a set S. Intuitively, κ(x) is the percentage
of mutations in Xm(x) that have a different label f(xm) from f(x). To abuse the
notations, we use κnor and κadv to denote the average LCR of normal samples and that
of adversarial samples respectively. Our observation is that: κadv � κnor, which we
regard as mutation testing effect. The implication is that we can detect an adversarial
sample by evaluating whether its LCR is beyond a certain threshold.

A Theoretical Analysis In the following, we aim to provide a theoretical analysis on
the above mutation testing effect, according to which, an adversarial sample has a
significantly higher LCR than a normal sample. Before delving into the details, an
intuitive explanation of the phenomenon is that an adversarial sample is often generated
by imposing a perturbation that is as small as possible but still able to cross the decision
boundary on a normal sample (otherwise it will be a different or unknown label even
to human observers and thus obvious). So the crafted adversarial samples are likely
close to the decision boundary. On the contrary, normal samples are likely far from the
decision boundary for a well-trained DNN (with good generalization). Therefore, it is
more likely to obtain a different label by sampling around an adversarial sample than a
normal sample. In the following, we provide a formal analysis for this intuition and a
lower bound on the LCR of an adversarial sample.

Let f : Rm → C be the classification function of the DNN, and ‖·‖ : Rm → [0,+∞)
a norm on the sample space Rm. We assume that there is a ground-truth classification
function c : Rm → C, and that the model f is well-trained in the sense that the
classification boundaries of f and c has the distance close to 0. For a sample x0 ∈ Rm,
we restrict a sampling region B(x0, δ) := {x ∈ Rm | ‖x − x0‖ < δ} and assume a
sampling distribution µ. We use Prµ(f(x) 6= f(x0)) to denote the probability that we
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Fig. 2: A lower bound of LCR for an adversarial sample is the measure of the overlapping
region on the sampling distribution.

get a sample with a different label from x0 according to the sampling distribution µ,
which is exactly the LCR of x0.

For the sampling regionB(x0, δ) and the corresponding sampling distribution µδ , we
assume the set of sampling distribution {µδ | δ > 0} satisfies the following conditions:

– µδ(B(x0, δ)) = 1 for all δ > 0;
– For all δ > 0, µδ has the joint density function pδ satisfying pδ(x) = pδ(y) for any
x, y ∈ Rm satisfying ‖x− x0‖ = ‖y − x0‖.

These assumptions fit the distributions we usually use, like the uniform distribution and
the normal distribution. They will also be adopted in the following analysis.

We first consider an extreme case when x0 is an optimal adversarial example of
a normal sample x′ in the sense that x0 is the solution of the following optimization
problem:

min ‖x− x′‖
s.t. f(x) 6= cx. (1)

That is to say, samples in the region B(x′, ‖x0 − x′‖) has a different label from x0. We
write r = ‖x0 − x′‖. As Fig. 2(a) shows, we have

Prµδ(f(x) 6= f(x0)) ≥
∫
‖x−x0‖≤δ∧‖x−x′‖≤r

µδ(dx).

The following theorem gives an approximation of this lower bound.

Theorem 1. For any Lp norm ‖ · ‖ with 1 < p < +∞,

lim
δ→0+

∫
‖x−x0‖≤δ∧‖x−x′‖≤r

µδ(dx) =
1

2
.
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Proof. Let λm be the Lebesgue measure on Rm. First we claim that, for any increasing
sequence rn ↑ +∞,

lim
n→∞

∫
‖x−x0‖=1∧‖x−x′‖≤rn λm−1(dx)∫

‖x−x0‖=1
λm−1(dx)

=
1

2
. (2)

Notice the fact that the sequence of sets {x ∈ Rm | ‖x − x0‖ = 1 ∧ ‖x − x′‖ ≤ rn}
converges to a semi-sphere D of ∂B(x0, 1) as n→∞, so

lim
n→∞

∫
‖x−x0‖=1∧‖x−x′‖≤rn λm−1(dx)∫

‖x−x0‖=1
λm−1(dx)

=
limn→∞

∫
‖x−x0‖=1∧‖x−x′‖≤rn λm−1(dx)∫
‖x−x0‖=1

λm−1(dx)

=

∫
D
λm−1(dx)∫

‖x−x0‖=1
λm−1(dx)

=

1
2

∫
‖x−x0‖=1

λm−1(dx)∫
‖x−x0‖=1

λm−1(dx)
=

1

2
,

where the second = uses the fact that
∫
An

g dµ converges to
∫
A
g dµ given measurable

An → A as n → ∞. We can see
∫
‖x−x0‖=1∧‖x−x′‖≤r λm−1(dx) is monotone as r

increases, so Equ. 2 is equivalent to

lim
r→+∞

∫
‖x−x0‖=1∧‖x−x′‖≤r λm−1(dx)∫

‖x−x0‖=1
λm−1(dx)

=
1

2
, (3)

and

lim
δ→0+

∫
‖x−x0‖=δ∧‖x−x′‖≤r λm−1(dx)∫

‖x−x0‖=δ λm−1(dx)
=

1

2
.

From the assumptions of µδ , we write qδ(t) = pδ(x) for ‖x‖ = t. Then we consider
the set E = {x ∈ Rm | ‖x− x0‖ = δ ∧ ‖x− x′‖ = r}. We draw segments from x0 to
the points in E and they form an (m− 1)-dimension hyperplane, and we use Aδ denote
the region surrounded by this hyperplane and {x ∈ Rm | ‖x−x0‖ = δ∧‖x−x′‖ ≤ r}.
Because B(x′, r) is convex, Aδ is a subset of the target integration region {x ∈ Rm |
‖x− x0‖ ≤ δ ∧ ‖x− x′‖ ≤ r}, and we have

lim
δ→0+

∫
‖x−x0‖≤δ∧‖x−x′‖≤r

µδ(dx) ≥ lim
δ→0+

∫
Aδ

pδ(x) dx = lim
δ→0+

∫
Aδ
pδ(x) dx∫

B(x,δ)
pδ(x) dx

= lim
δ→0+

∫
‖x−x0‖=δ∧‖x−x′‖≤r dλm−1

∫
0≤t≤δ qδ(t) dt∫

‖x−x0‖=δ dλm−1
∫
0≤t≤δ qδ(t) dt

= lim
δ→0+

∫
‖x−x0‖=δ∧‖x−x′‖≤r dλm−1∫

‖x−x0‖=δ dλm−1
=

1

2
. (4)
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Table 1: The simulation results of the lower bound of the probability Prµδ(f(x) 6=
f(x0)) with different ε and δ. The results are based on 1000000 samples each.

ε
δ

0.05 0.08 0.1 0.15 0.18 0.2

0.0001 0.2056% 2.6977% 4.9912% 9.0231% 10.1639% 10.4286%
0.00005 6.6341% 14.0125% 16.5768% 18.7768% 18.4909% 17.9706%

Also, the target integration region {x ∈ Rm | ‖x− x0‖ ≤ δ ∧ ‖x− x′‖ ≤ r} is always
a subset of some semi-ball of B(x0, 1), so it is easy to see∫

‖x−x0‖≤δ∧‖x−x′‖≤r
µδ(dx) ≤

1

2
. (5)

From Equ. 4 and Equ. 5, we complete the proof. ut

Thm. 1 implies that, if the adversarial example x0 is obtained from the optimization
problem 1 and the sampling region is small enough, the lower bound of the probability
Prµ(f(x) 6= f(x0)), which is the LCR of an adversarial sample x0, is almost 1/2.

In reality, an adversarial example x0 might not be the exact solution of (1) because
some approximation algorithm may be adopted. In this situation, Thm. 1 does not hold
anymore. In the following, we assume that the adversarial example x0 has an ε-error
to the solution x∗ of the problem 1, i.e. ‖x0 − x∗‖ ≤ ε. For simplicity, we use the L2

norm. Then for δ > ε, Equ. 3 still holds, as Fig. 2(b) shows, which stills provides a
lower bound on the LCR of x∗. We illustrate through the following example to get an
estimation of this lower bound with different sample radius δ.

Example 1. We use the MNIST dataset as example and the number of dimensions in the
input layer ism = 784. For the sampling distribution µδ , we use the uniform distribution
µδ = U(B(x0, δ)). Here we set ε = {0.0001, 0.00005} and r = 0.1, and Table 1 shows
the simulation results of the probability in the RHS of Equ. 3 with different ε and δ
values. From the results, we could observe that 1) a larger sampling region induces a
larger LCR as expected and 2) a more carefully crafted adversarial sample (with smaller
ε) has a higher LCR which makes it easier to detect using our approach.

In contrast to the high LCR of adversarial samples, since most normal samples
(with f(x0) = cx0

) are likely far away from the decision boundaries, the probability
Prµδ(f(x) 6= f(x0)) for a normal sample is very likely to be close to 0. We remark that
those normal samples near the classification boundaries may behave like adversarial
samples with relatively high LCR. However, such false positive errors are minor (if a
DNN is well-trained) and tolerable since it does no harm to report few normal samples
as adversarial ones in safety-concerned applications.
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Algorithm 1: DetectAdv(x, f, κ1, µ, δ, α, β, σ)
1 Let stop = false;
2 Let c = 0 be the count of mutations that satisfy f(xm) 6= f(x);
3 Let n = 0 be the count of total mutations generated so far;
4 while !stop do
5 Randomly generate a mutation xm of x from B(x, δ);
6 n = n+ 1;
7 if f(xm) 6= f(x) then
8 c = c+ 1;
9 Calculate the SPRT probability ratio as pr;

10 if pr ≥ 1−β
α

then
11 Accept the hypothesis that κ(x) > µ · κ1 and report the input as an

adversarial sample with error bounded by β;
12 return;

13 if pr ≤ β
1−α then

14 Accept the hypothesis that κ(x) ≤ µ · κ1 and report the input as a normal
sample with error bounded by α;

15 return;

4 The Detection Algorithm

The implication of the mutation testing effect and its theoretical analysis in previous sec-
tions is that we can detect most adversarial samples by identifying those near-boundary
samples with high LCR. In this section, we introduce our adversarial sample detec-
tion algorithm which is based on the mutation testing effect and inspired by statistical
model checking [17]. The basic idea is to determine whether a given input is normal or
adversarial by testing whether its LCR is beyond a certain threshold.

Given an input sample x to a DNN f , we determine whether it is a normal sample
(i.e., f(x) = cx) or an adversarial sample (i.e., f(x) 6= cx) through mutation testing.
Our detection algorithm further reports an error bound on the detection result. Once x is
determined to be an adversarial sample, the user may reject the sample and avoid making
wrong decisions. In the following, we introduce how our algorithm works.

The algorithm Our detection algorithm is based on hypothesis testing shown in Algo-
rithm 1. It takes a parameter κ1 which is a threshold of LCR for normal samples, a
sampling region δ which is a measure of perturbation to generate mutations from, along
with multiple parameters for hypothesis testing. The basic idea is to use acceptance
sampling to test the hypothesis that κ(x) > µ · κ1 against the hypothesis κ(x) ≤ µ · κ1
with strength α, β and σ, where µ is a hyper parameter, α, β, and σ are the parameters
controlling the strength and indifference region of the test. Recall that κ(x) is the LCR
of sample x. There are two main methods to decide when the testing process can be
stopped, i.e., fixed-size sampling test (FSST) and sequential probability ratio test (SPRT).
In our algorithm, we adopt SPRT [3] to dynamically decide when to stop the test (so that
it is more likely to stop early).
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There are two possible outcomes. If the hypothesis is accepted, it means that the
input sample has a higher LCR than a normal sample. Thus, we report that x is an
adversarial sample with error bounded by β. If the hypothesis is rejected, we report
that the input sample is a normal sample with error bounded by α. If the test does not
satisfy a stopping criteria, the algorithm continues to randomly generate a mutation of
the provided sample at line 5. The stopping criteria is calculated at line 9. Whenever we
observe a label change, pr is calculated as follows.

pr =
pc1(1− p1)n−c

pc0(1− p0)n−c
,

where p1 = µ · κ1 + σ and p0 = µ · κ1 − σ. The algorithm stops whenever a hypothesis
is accepted either at line 11 or line 14. We remark that SPRT is guaranteed to terminate
with probability 1 [3]. On termination of Algorithm 1, we either report the sample as a
normal one or an adversarial one with an error bound.

5 Experimental Evaluation

In this section, we present a two-part evaluation of our method. In the first part, we aim
to show that most adversarial samples are near and most normal samples are far from
the decision boundary by evaluating the difference between κnor and κadv (of different
kinds of attacks). In the second part, we show the effectiveness and efficiency of LCR
and SPRT detection by comparing with state-of-the-art approaches to detect adversarial
samples. We also aim to provide some practical guidelines on the parameter selection.
All the results and code are available at [29].

Dataset and Models We adopt the MNIST and CIFAR10 dataset, and the set of attacking
methods in Cleverhans [24] for our experiments, i.e., FGSM, JSMA, C&W and BB.
MNIST and CIFAR10 have 60000/50000 images for training and 10000/10000 images
for testing respectively. We obtain a target model for MNIST and CIFAR10 each. The
model structures are briefly shown in Table 2 and details can be found in [29]. The
models achieve 99.59%/98.99% and 98.84%/81.54% accuracy on the training/testing set
for MNIST and CIFAR10 respectively, which both achieve state-of-the-art performance.

Adversarial Samples Generation For each kind of attack, we attempt to generate 5000
adversarial samples according to the parameters shown in Table 2. For FGSM, the
parameter controls the scale of the perturbation for the attack. For JSMA, the parameter

Table 2: Experiment settings.

Dataset #Training #Testing Model
Attack parameter/#Adversary

FGSM JSMA CW BB

MNIST 60000 10000 LeNet 0.3/5000 0.1/5000 10/5000 0.3/1359
CIFAR10 50000 10000 Deep 12-Layer Convnet [8,19] 0.01/4363 0.1/5000 0.1/4040 0.03/588



Detecting Adversarial Samples of Deep Neural Networks through Mutation Testing 11

Table 3: The confidence interval (99% significance level) of κnor and κadv of 1000
images randomly drawn from MNIST and CIFAR10 dataset with 5000 mutations for
MNIST and 5000 mutations for CIFAR10 under different attacks.

Dataset σ κnor
κadv

FGSM JSMA CW BB WL

MNIST 1 0.016±0.004 0.34±0.02 0.45±0.01 0.39±0.01 0.39±0.03 0.33±0.11
5 0.051±0.004 0.37±0.02 0.47±0.01 0.42±0.01 0.45±0.02 0.37±0.10
10 0.076±0.005 0.40±0.02 0.49±0.01 0.44±0.01 0.47±0.02 0.40±0.09

CIFAR10 1 0.10±0.02 0.27±0.02 0.50±0.01 0.21±0.01 0.50±0.04 0.38±0.03
5 0.18±0.02 0.34±0.02 0.55±0.01 0.38±0.01 0.52±0.03 0.41±0.02
10 0.21±0.01 0.37±0.02 0.57±0.01 0.41±0.01 0.54±0.04 0.43±0.02

controls the maximum distortion of the attack. For C&W, we adoptL2 attack according to
the author’s recommendation and set the scale cofficient. For BB, we obtain a substitute
model using the 3 Layer DeepNet [24] for MNIST and LeNet for CIFAR10. Since not
all attack attempts are successful, in the end we manage to obtain a certain number of
adversarial samples for each attack shown in Table 2. Notice that both the models used
and the parameters for the attack algorithms are exactly the same as the two baseline
methods introduced in the later section for a fair comparison.

5.1 Evaluation on κnor versus κadv

In this section, we present the evidence that most adversarial samples are near the deci-
sion boundary and most normal samples are away from the decision boundary though
evaluating κadv and κnor on a set of randomly chosen images. Recall that in our defini-
tion, there is no difference between adversarial samples and benign samples which are
wrongly labeled by the DNN in the training or testing dataset. We use WL to represent
those wrongly-labeled samples later. We randomly select 1000 normal/adversarial sam-
ples and vary the sampling region from 1, 5 and 10. For each image x (either normal
or adversarial), we randomly generate 5000 mutations to calculate its label change rate
κ(x). We obtain the confidence interval of κadv for each attack and κnor for normal
samples by averaging κ(x) over all the tested adversarial (using different attacks) and
normal images respectively. The detailed results are shown in Table 3. We have the
following observations which supports our hypothesis.

Firstly, κnor is a small value comparable to the training error for a well trained
DNN, whereas κadv is significantly larger than κnor for all the experimented attacks.
This is especially true when we set a small sampling region (e.g., 1) for generating
mutations, in which case each of the four evaluated attacks has a κadv that is 21, 28, 24
and 24 times of κnor respectively for the MNIST dataset.

Secondly, as we increase the sampling region for generating mutations, both κnor and
κadv increase (as expected) and the relative distance between κnor and κadv reduces. In
the following, we measure the relative distance between κnor and κadv using their ratio
κadv/κnor. We can calculate that for all the experimented attacks, a smaller sampling
region will result in a larger distance between κadv and κnor.
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Thirdly, adversarial samples crafted by different attacks have different LCR to
perturbations. We can observe that different attack methods have different κadv values
(although all of them are significantly larger than κnor). As a result, if there is a new
attack method, we are unlikely able to know its κadv value. Thus, it is not a good idea to
test against κadv. However, since 1) κnor is a relatively stable value for a given DNN
and the set of training data, and 2) we know that κadv is significantly larger than κnor,
we can detect adversarial samples from an unknown attack by testing against κnor.

5.2 Adversarial Samples Detection

We compare our LCR-based method with two state-of-the-art baselines for detecting
adversarial samples. In [8], two joint features, i.e., kernel density estimate (KD) and
model uncertainty estimate (MU) are proposed for detecting adversarial samples from
artifacts. In [19], local intrinsic dimensionality (LID) is used for the detection and shown
to perform better than [8]. We skip the details and interested readers can refer to [8,19].
In the following, we first adopt Receiver Operating Characteristic (ROC) analysis to
show LCR is more effective than existing state-of-the-art features. Then, we report the
results of our detection algorithm using LCR as the feature for the detection. We also
provide some analysis to compare the cost of different approaches as well as some
practical guidelines to improve the performance of our detection algorithm.

ROC analysis The ROC curve [7] is a standard method to measure how good a feature
is for binary classification. In our context, the ROC curve plots the true positive rate
(TPR) against false positive rate (FPR) when using a certain feature (LCR, KD, MU
and LID) to distinguish normal and adversarial samples. We further use Area Under
ROC (AUROC) for a quantitative comparison. The closer AUROC is to 1 (i.e., a perfect
feature), the better the feature is. Table 4 shows the AUROC results of LCR compared
to state-of-the-art features including KD, MU and LID. The best result among the four
features is in bold and the second best result is in italic. We observe that LID is in general
better than KD and MU, while LCR achieves the best performance in most cases. For
instance, LCR has the best result in 7 out of 10 cases (among the top-2 results in all
cases) and has the best average results. In many cases like MNIST-WL and MNIST-CW,
LCR achieves a perfect or near perfect performance, which is significantly better than
the second best feature. In summary, we can confirm that LCR is an effective feature to
detect adversarial samples with a high TPR and a low FPR.

Detection We have shown that LCR outperforms state-of-the-art features to detect
adversarial samples by ROC analysis. In the following, we evaluate the effectiveness and
efficiency of detecting adversarial samples using SPRT with LCR as the feature. The
detailed results and a comparison to the baselines are shown in Table 5.

Overall performance On average, our algorithm is able to detect 95.1% (81.2% respec-
tively) adversarial samples generated from the four kinds of attacks for MNIST and
(CIFAR10 respectively) dataset with only 26.2 (70.4 respectively) mutations. In Table 5,
we provide a complete comparison of our approach with baselines in terms of precision,
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Table 4: AUROC results of different features for the detection.
Dataset CIFAR10 MNIST

Attack/Feature KD MU LID LCR KD MU LID LCR
FGSM 0.5623 0.7783 0.7924 0.8025 0.8764 0.9598 0.9877 0.9671
JSMA 0.5627 0.8980 0.9501 0.9450 0.9076 0.9893 0.9727 0.9919
CW 0.5682 0.8411 0.8766 0.8647 0.8919 0.9828 0.9682 0.9970
BB 0.5428 0.8691 0.9173 0.9417 0.8561 0.9359 0.9764 0.9930
WL 0.5603 0.8127 0.8400 0.8477 0.7596 0.9932 0.5283 1.0000

Average 0.5593 0.8398 0.8752 0.8803 0.8583 0.9722 0.8866 0.9898

recall and detection accuracy with the best results in bold. We could observe that SPRT
with LCR outperforms baseline approaches in terms of almost all metrics. Note that
both state-of-the-art approaches work in a white-box setting which requires the full
knowledge of the DNN. Furthermore, they need to train a detector which is shown to be
vulnerable to new attacks under a white-box attack setting [5]. On the contrary, LCR
works in a black-box setting and is more resilient even under white-box attacks since it
only relies on randomly mutating the input (a form of randomization which is potentially
the most effective approach according to [5]) and obtaining its label.

Effect of µ Intuitively, µ reflects how confident we are that κadv is significantly larger
than κnor. Fig. 3 shows the effect of µ on the performance of SPRT. We can observe
that as we increase µ, we are able to detect adversaries with fewer number of mutations.
However, the accuracy of the detection drops slightly. In practice, a smaller µ should be
preferred if the system has a higher safety requirement and vice versa.

Wrongly-labeled samples detection We can observe that our algorithm is also able to
detect these wrongly-labeled samples similarly to detecting the adversarial samples. This
suggests that wrongly-labeled samples are mostly near the decision boundary which are
the same as the adversarial samples from a statistical point of view.

Normal samples detection There is a tradeoff between the detection accuracy of normal
samples and adversarial samples. From Fig. 3, we could observe that as we increase
µ, the accuracy of detecting adversarial samples decreases whereas the accuracy of
detecting normal samples increases since we set a larger threshold. This also suggests
that there is a minor portion of normal samples which are near the decision boundary.

Table 5: Detection performance compared to baselines.

Metric
MNIST CIFAR10

KD MU LID LCR KD MU LID LCR

Precision 0.7737 0.9452 0.7395 0.9728 0.5588 0.7689 0.8192 0.834
Recall 0.8246 0.9492 0.7629 0.9317 0.8072 0.7979 0.7758 0.8101

Accuracy 0.7906 0.947 0.8502 0.9508 0.585 0.7805 0.8026 0.8121
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Fig. 3: Effect of µ on the performance of SPRT based on LCR.

Cost analysis The cost of our algorithm mainly consists of two parts, i.e., generating
mutated input (denoted by cg) and performing forward propagation (denoted by cf ) to
obtain the label of an input sample by a DNN model. The total cost of detecting an input
sample is thus C = n · (cg + cf ), where n is the number of mutations needed to draw a
conclusion for the detection. Given an image x (either from MNIST or CIFAR10), we
estimate cg and cf by generating 10000 mutated input of x and feed the mutated input
to the DNN and calculate the average time cost. Table 6 shows the detailed cost of our
approach. We could observe that both obtaining a mutated input (i.e., cg) and obtaining
the label of an the mutated input (i.e., cf ) are reasonably efficient with cg = 1.22 ms
and cf = 0.66 ms for MNIST and cg = 2.59 ms and cf = 0.85 ms for CIFAR10.
Overall, our algorithm is able to detect an adversarial sample of MNIST and CIFAR10
in 49.8 ms and 239.4 ms respectively. One further note is that our algorithm is easy to be
paralleled by evaluating multiple mutated inputs at the same time.

Table 6 also shows the cost of the two baseline approaches, which work by extracting
the features such as KD, MU and LID, for a single input. We could observe that these
baseline features have significantly higher cost than LCR. A close look at the details
on extracting the features shows that calculating KD and LID requires us to examine
all the samples in the training set to calculate a certain distance, while calculating MU
requires us to sample the weights multiple times, get their outputs on the input sample,
and compute the uncertainty. In general, the cost of these baseline approaches increases
if the training set gets larger and the model gets more accurate, whereas the cost of our
approach in the latter case drops because we would need fewer mutations.

Discussions In the following, We discuss several factors which could affect the effec-
tiveness of our approach. The first is model quality. Our method performs better on
well-trained models with good generalization. The reason is that fewer normal samples
are near the decision boundary for a model of higher quality. The second is the method
of adversarial perturbation. Our method is more effective in detect adversarial attacks
which generates adversarial samples with smaller perturbations from a normal sample
since they are closer to the decision boundary in general. This meas that a more carefully
crafted adversarial sample might be easier to detect. The third is sampling region. The
optimal sampling region for our detection method might be application-dependent. In
reality, users can select a good value by testing over a small set of data.
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Table 6: Cost analysis of LCR compared to baselines.
Dataset KD MU LID LCR LCR-n

MNIST 2516.8 ms 34.66 ms 2067.7 ms 1.9 ms 26.2
CIFAR10 4886.2 ms 66 ms 4094.7 ms 3.4 ms 70.4

6 Related Works

First of all, our work is devised to detect adversarial samples which can be obtained
through many different kinds of adversarial attacks. These attacks can be roughly divided
into two categories, i.e., white-box attacks with access to the DNN [10,23,28,6] and
black-box attacks without the knowledge of the DNN [25,18]. There are some relevant
research in the software engineering community as well. Both white-box and black-box
testing strategies have been proposed to identify adversarial samples more efficiently and
utilize these samples to improve the original DNN by retraining [28,36,34]. The main
problem of these testing approaches is that they provide no guarantees on the robustness
against new attacks.

On the defense side, one line of work is to improve the robustness of DNN by
adversarial training, which trains models with adversarial samples [10,16,12,32]. A
similar line of work is to consider all the perturbations of input samples during training
by robust optimization [31,20,22]. These approaches improve the robustness of the DNN
to some extent. There are also attempts to formally verify the DNN to provide safety
guarantees [13,14,15,35,9]. But they often can only prove pointwise safety around a
small region of a given input so far and are in general quite cost-expensive.

Our work falls into detection of adversarial samples. Existing detection algorithms
either trains subsidiary models from adversarial samples [21,37] or tests the statistical
differences between the training samples and adversarial samples [11,8,19]. Compared
to existing detection algorithms, our algorithm does not rely on any specific adversarial
samples which generalizes to unknown attacks and is efficient enough to be deployed as
runtime monitors in real-time applications.

7 Conclusion

In this work, we propose a new feature, i.e., Label Change Rate, to distinguish adversarial
samples from normal samples of deep neural networks (DNN). We provide a theoretical
analysis on the LCR difference to show the effectiveness of using LCR for the detection.
We also design an algorithm for adversarial sample detection based on statistical model
checking. Our experiments on broadly adopted datasets show that our algorithm is
able to detect adversarial samples with high accuracy and low cost (few mutations
needed) compared to state-of-the-art detection methods. Besides, our approach requires
no knowledge of the DNN and is not limited to detect a specific kind of attack or a set of
available adversarial samples, but can be generalized to a wide range of unknown attacks.
It is also efficient enough to be deployed runtime monitors in real-time applications.
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