
Towards Optimal Concolic Testing

Xinyu Wang
Zhejiang University

wangxinyu@zju.edu.cn

Jun Sun
Singapore U. of Tech. and Design

sunjun@sutd.edu.sg

Zhenbang Chen
National U. of Defense Technology

zbchen@nudt.edu.cn

Peixin Zhang
Zhejiang University

zhangpeixin@zju.edu.cn

Jingyi Wang
Singapore U. of Tech. and Design
jingyi wang@mymail.sutd.edu.sg

Yun Lin
National University of Singapore

llmhyy@gmail.com

ABSTRACT

Concolic testing integrates concrete execution (e.g., random
testing) and symbolic execution for test case generation. It
is shown to be more cost-effective than random testing or
symbolic execution sometimes. A concolic testing strategy
is a function which decides when to apply random testing
or symbolic execution, and if it is the latter case, which
program path to symbolically execute. Many heuristics-based
strategies have been proposed. It is still an open problem
what is the optimal concolic testing strategy. In this work,
we make two contributions towards solving this problem.
First, we show the optimal strategy can be defined based on
the probability of program paths and the cost of constraint
solving. The problem of identifying the optimal strategy is
then reduced to a model checking problem of Markov Decision
Processes with Costs. Secondly, in view of the complexity in
identifying the optimal strategy, we design a greedy algorithm
for approximating the optimal strategy. We conduct two sets
of experiments. One is based on randomly generated models
and the other is based on a set of C programs. The results
show that existing heuristics have much room to improve and
our greedy algorithm often outperforms existing heuristics.

ACM Reference Format:

Xinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi
Wang, and Yun Lin. 2018. Towards Optimal Concolic Testing. In
ICSE ’18: ICSE ’18: 40th International Conference on Software

Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3180155.
3180177

1 INTRODUCTION

Concolic testing, also known as dynamic symbolic execution,
is an integration of concrete execution (a.k.a. testing) with
symbolic execution [22, 41]. Concrete execution and symbolic
execution naturally complement each other. On one hand,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180177

concrete execution is computationally cheap. That is, we
keep sampling test inputs according to a prior probabilistic
distribution of all test inputs, and concretely execute the
program with the test inputs until certain test coverage cri-
teria is satisfied. The issue is that if a certain program path
has very low probability, a huge number of test inputs must
be sampled to cover the program path. On the other hand,
symbolic execution solves this problem by identifying the
constraint which must be satisfied in order to cover the pro-
gram path and solving the constraint to obtain the test input.
In other words, the probability of covering the program path
with symbolic execution is one1. The issue is that symbolic
execution is often computationally expensive. Intuitively, an
effective concolic testing strategy should symbolically exe-
cute those program paths with low probability and concretely
execute those program paths whose path conditions are hard
to solve.

It is still an open problem on what is the optimal concolic
testing strategy. In the literature, there have been multiple
attempts on solving the problem [6, 7, 23, 33, 38, 42]. For
instance, several heuristics have been developed to answer the
question: which program paths (among all program paths) do
we symbolically execute in concolic testing? To name a few,
Burnim et al. proposed the CFG strategy [6], which calculates
the distance from the branches in an execution path to any
of the uncovered statements and selects a branch that has
the minimum distance. In [23], Godefroid et al. proposed
the generational strategy, which measures the incremental
coverage gain of each branch in an execution path and guides
the search by expanding the branch with the highest coverage
gain. In [33], Li et al. introduced a technique which steers
symbolic execution to less traveled paths. While existing
heuristics have been shown to be effective empirically, it is
unclear whether better performance is achievable or how far
they are from the optimal performance.

Furthermore, existing work has largely neglected the other
part of the problem, i.e., how do we switch between concrete
execution and symbolic execution to achieve the optimal
performance? To the best of our knowledge, this problem was
only recently discussed in [3, 4, 45]. The authors compare the
effectiveness of random testing and systematic testing meth-
ods (including but not limited to symbolic execution) based
on a probabilistic view of programs, and present a hybrid
strategy which switches from random testing to systematic

1For simplicity, we assume that the constraint encoding and solving
are perfect and thus there is no divergence.

https://doi.org/10.1145/3180155.3180177
https://doi.org/10.1145/3180155.3180177
https://doi.org/10.1145/3180155.3180177

ICSE ’18, May 27-June 3, 2018, Gothenburg, SwedenXinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin

testing when the latter is expected to discover more errors
per unit time. Their approach however takes a very abstract
view of systematic testing methods and do not consider, for
instance, different strategies on applying symbolic execution.
Furthermore, their algorithm is very high-level and is only
validated on simulated models.

In this work, we aim to develop a framework which allows
us to define and compute the optimal concolic testing strate-
gy. That is, we aim to systematically answer when to apply
concrete execution, when to apply symbolic execution and
which program path to apply symbolic execution to. In par-
ticular, we make the following technical contributions. Firstly,
we show that the optimal concolic testing strategy can be
defined based on a probabilistic abstraction of program be-
haviors. Secondly, we show that the problem of identifying
the optimal strategy can be reduced to a model checking
problem of Markov Decision Processes with Costs. As a re-
sult, we can reuse existing tools and algorithms to solve the
problem. Thirdly, we evaluate existing heuristics empirically
using a set of simulated experiments and show that they
have much room to improve. Fourthly, in view of the high
complexity in computing the optimal strategy, we propose a
greedy algorithm which approximates the optimal one. We
empirically evaluate the greedy algorithm based on both sim-
ulated experiments and experiments with C programs, and
show that it gains better performance than existing heuristics
in KLEE [7].

The remainders of the paper are organized as follows. Sec-
tion 2 defines the research problem and shows its relevance
with an example. Section 3 reduces the problem to a model
checking problem and compares existing heuristics to the op-
timal strategy. Section 4 develops a greedy algorithm which
allows us to approximate the optimal strategy. Section 5
presents our implementation and evaluates the greedy algo-
rithm. Section 6 reviews related work and Section 7 concludes.

2 PROBLEM DEFINITION

In the following, we define the problem. Without loss of
generality, we define a program (e.g., Java/C) as follows.

Definition 2.1. A program is a labelled transition system
𝒫 = (𝐶, 𝑖𝑛𝑖𝑡, 𝑉, 𝜑, 𝑇) where

∙ 𝐶 is a finite set of control locations;
∙ 𝑖𝑛𝑖𝑡 ∈ 𝐶 is a unique entry point (i.e., the start of the
program);

∙ 𝑉 is a finite set of variables;
∙ 𝜑 is a predicate capturing the set of initial valuations
of 𝑉 ;

∙ 𝑇 : 𝐶 ×𝐺𝐶 → 𝐶 is a transition function2 where each
transition is labeled with a guarded command of the
form [𝑔]𝑓 where 𝑔 is a guard condition and 𝑓 is a
function updating valuation of variables 𝑉 .

A concrete execution (a.k.a. a test) of 𝒫 is a sequence
𝜋 = ⟨(𝑣0, 𝑐0), 𝑔𝑐0, (𝑣1, 𝑐1), 𝑔𝑐1, · · · , (𝑣𝑘, 𝑐𝑘), 𝑔𝑐𝑘, · · · ⟩ where 𝑣𝑖
is a valuation of 𝑉 , 𝑐𝑖 ∈ 𝐶, 𝑔𝑐𝑖 = [𝑔𝑖]𝑓𝑖 is a guarded command

2We focus on deterministic sequential programs in this work.

such that (𝑐𝑖, 𝑔𝑐𝑖, 𝑐𝑖+1) ∈ 𝑇 , 𝑣𝑖 � 𝑔𝑖, and 𝑣𝑖+1 = 𝑓𝑖(𝑣𝑖) for all
𝑖, and 𝑣0 � 𝜑 and 𝑐0 = 𝑖𝑛𝑖𝑡. We say 𝜋 covers a control location
𝑐 if and only if 𝑐 is in the sequence. A control location 𝑐 is
reachable if and only if there exists a concrete execution which
covers 𝑐. The initial variable valuation 𝑣0 is also referred to
as a test case.

A (rooted) program path of 𝒫 is a sequence of connected
transitions 𝜋 = ⟨(𝑐1, 𝑔𝑐1, 𝑐2), (𝑐2, 𝑔𝑐2, 𝑐3), · · · , (𝑐𝑘, 𝑔𝑐𝑘, 𝑐𝑘+1)⟩
such that 𝑐1 = 𝑖𝑛𝑖𝑡 and (𝑐𝑖, 𝑔𝑐𝑖, 𝑐𝑖+1) ∈ 𝑇 for all 𝑖. The
corresponding path condition is: 𝑃𝐶(𝜋) = ∃𝑣2, · · · , 𝑣𝑘+1. 𝑔1∧
(𝑣2 = 𝑓1(𝑣1))∧𝑔2∧· · ·∧𝑔𝑘∧(𝑣𝑘+1 = 𝑓𝑘(𝑣𝑘)). We write 𝑝𝑎𝑡ℎ(𝒫)
to denote all paths of program 𝒫.

Example 2.2. Figure 1 shows a simple Java program. The
corresponding transition system is shown in the middle of
Figure 1, where the commands are skipped for readability.
The transition system contains 8 control locations, corre-
sponding to the 8 numbered lines in the program. We assume
that each line is atomic for simplicity. The initial condition
𝜑 is 𝑥 ∈ 𝐼𝑛𝑡 ∧ 𝑦 ∈ 𝐼𝑛𝑡 where 𝐼𝑛𝑡 is the set of all integers.

For simplicity, we assume that the goal is to generate test
cases so that the corresponding concrete executions cover all
reachable control locations (i.e., 100% statement coverage).
In the literature, there have been many approaches on test
case generation [11, 12, 26]. In this work, we focus on two
ways of generating test cases.

One is random testing. To conduct random testing, we fix
a prior distribution 𝜇 on all the test cases and then randomly
sample a test case each time according to 𝜇. Afterwards,
we execute the program with the sampled test case until
it finishes execution. For instance, if we assume a uniform
distribution on all test cases for the program shown in Fig-
ure 1, random testing is to randomly generate a value for 𝑥
and 𝑦 and then concretely execute the program. The cost of
random testing, in terms of time, is often small. In this work,
we simply assume that the cost is 1 time unit3. Assume that
every test case is associated with certain non-zero probability
in 𝜇, it is trivial to show eventually we can enumerate all test
cases through random testing and cover all reachable control
locations. Unfortunately, in practice we have limited time
and budget and thus we may not be able to cover certain
control locations with a limited number of random test cases.
For instance, with a uniform probability distribution among
all possible values for 𝑥 and 𝑦, on average it takes 232 random
test cases to cover line 2 in Figure 1.

Another way of generating test cases is symbolic execu-
tion [12]. Given a program path, a constraint solver is em-
ployed to check the satisfiability of the path condition and
construct a test case if it is satisfiable. Afterwards, we execute
the program with the test case until it finishes execution.
Symbolic execution may sometimes be more cost-effective
than random testing. For instance, with the constraint solver
Z3 [14], we can easily solve the path condition (i.e., 𝑥 == 𝑦)
for visiting line 2 in Figure 1 to generate the required test

3The cost of one random testing varies widely in practice. We will
extend our work with variable random testing cost in the future work.

Towards Optimal Concolic Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

void myfunc(int x, int y) {
1. if (x==y) {
2. x++;

}
3. if ((x*x)%10==9) {
4. return;

}
5. if (x*y + 3*y - 5*x == 15) {
6. if (x % 2 == 1 || y % 2 == 1) {
7. x = x-y;

}
}

8. return;
}

Figure 1: Abstraction

case. However, symbolic execution may not always be cost-
effective. For instance, to obtain a test covering line 4, we can
apply symbolic execution to solve the path condition which
includes the condition at line 3. It is likely to be non-trivial
due to the non-linear constraint. In comparison, generating
a random test case to satisfy the condition at line 3 is much
easier, i.e., on average 5 random test cases are needed. In
general, the cost of symbolic execution is considerably more
than that of random testing as constraint solving could be
time-consuming.

Furthermore, when symbolic execution is applied to gen-
erate a test case for covering a certain control location, we
can either solve the path condition of a path ending with
the control location or the path condition of its prefix. For
instance, in order to cover line 7, we can either solve the
path composed of line 1, 3, 5, 6 and 7, or the path composed
of line 1, 3, 5 and 6 (once or multiple times) to generate
test cases. The latter might be more cost-effective as the
constraint to be solved has fewer clauses. In this particular
example, solving the latter once is sufficient to cover line 7.

Concolic testing is the integration of random testing and
symbolic execution. In this work, we define a strategy for
concolic testing to be a function which generates a choice
between random testing or symbolic execution (on a certain
path) repeatedly until the testing goal is achieved. Two
extreme ones are: (1) applying random testing always, and (2)
applying symbolic execution for each program path. There
are many alternative ones [6, 7, 23, 33, 38, 42]. Multiple
strategies have been adopted in existing concolic testing
engines (e.g., KLEE [7], Pex [47] and JDart [34]). As we
show above, one strategy might be more cost-effective than
others for certain programs. For instance, for the example
shown in Figure 1, a ‘better’ strategy would apply symbolic
execution to the path composed of line 1 and 2 (to cover
line 2), apply symbolic execution to the path composed of
1, 3, 5 and 6 (to cover line 7), and apply random testing
to cover the rest of the lines. The question is then how to
compare different strategies. In this work, we investigate the

effectiveness of different strategies for concolic testing and
answer the following open questions.

RQ1: What is the optimal concolic testing strategy given a
program?

RQ2: Can we efficiently compute the optimal strategy?
RQ3: Are existing strategies good approximation of the opti-

mal strategy?
RQ4: Is it possible to design a practical algorithm to approx-

imate the optimal strategy?
RQ5: If the answer to RQ4 is positive, how does the algorithm

compare to existing heuristics?

We answer these questions in the following sections.
We remark that we do not consider strategies which sim-

plify complex symbolic constraints using concrete values in
this work. Furthermore, we assume that the path condition
encoding and solving are perfect and thus there is no diver-
gence. Considering these would considerably complicate the
discussion and thus we leave it to future work.

3 OPTIMAL STRATEGY

In this section, we show that the optimal concolic testing
strategy can be defined based on the probability of program
paths and the cost of constraint solving. Furthermore, it can
computed through model checking.

3.1 Markov Chain Abstraction

To answer RQ1, we first develop an abstraction of programs
in the form of Markov Chains.

Definition 3.1. A (labeled) discrete time Markov Chain
(DTMC) is a tuple ℳ = (𝑆, 𝑃𝑟, 𝜇) where 𝑆 is a finite set of
states; 𝑃𝑟 : 𝑆 × 𝑆 → R+ is a labeled transition probability
function such that Σ𝑠′∈𝑆𝑃𝑟(𝑠, 𝑠′) = 1 for all 𝑠 ∈ 𝑆; and 𝜇 is
the initial probability distribution such that Σ𝑠∈𝑆𝜇(𝑠) = 1.

A state 𝑠 ∈ 𝑆 is called a sink state if there are no outgoing
transitions from 𝑠. We often write 𝑃𝑟(𝑠, 𝑠′) to denote the
conditional probability of visiting 𝑠′ given the current state 𝑠.
The conditional probability 𝑃𝑟(𝑠, 𝑠′) is also called as one-step

ICSE ’18, May 27-June 3, 2018, Gothenburg, SwedenXinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin

transition probability. A path ofℳ is a sequence of states 𝜋 =
⟨𝑠0, 𝑠1, 𝑠2, · · · ⟩. We write 𝑠𝑡𝑎𝑡𝑒𝑠(𝜋) to denote the set of states
in 𝜋. Let 𝑃𝑎𝑡ℎ(ℳ) denote all paths of ℳ. The probability
of 𝜋, written as 𝑃𝑟(𝜋), is the product of all the one-step
transition probability, i.e., 𝑃𝑟(𝜋) = 𝜇(𝑠0) × Π𝑖𝑃𝑟(𝑠𝑖, 𝑠𝑖+1).
Given a finite path 𝜋, we write 𝑙𝑎𝑠𝑡(𝜋) to denote the ending
state in the sequence; and 2𝑙𝑎𝑠𝑡(𝜋) to denote the second last
state. We say that a finite path 𝜋 is maximal if 𝑙𝑎𝑠𝑡(𝜋) is a
sink state. We write 𝑃𝑎𝑡ℎ𝑚𝑎𝑥(ℳ) denote all maximal paths
of ℳ. We write 𝑃𝑎𝑡ℎ𝑚𝑎𝑥(𝑠,ℳ) denote all maximal paths
of ℳ starting with 𝑠. Furthermore, we say that 𝜋 is non-
repeating if every state in 𝜋 appears at most once. We write
𝑃𝑎𝑡ℎ(ℳ, 𝑠) to denote all finite paths which end with state 𝑠.
The accumulated probability of all paths in 𝑃𝑎𝑡ℎ(ℳ, 𝑠) is
the probability of reaching 𝑠, written as 𝑃𝑟ℳ(𝑟𝑒𝑎𝑐ℎ(𝑠)) for
simplicity. Similarly, we write 𝑃𝑎𝑡ℎ(ℳ, 𝑠, 𝑠′) to denote all
finite paths which start with state 𝑠 and end with state 𝑠′ and
𝑃𝑟ℳ(𝑟𝑒𝑎𝑐ℎ(𝑠, 𝑠′)) to denote the accumulated probability of
all paths in 𝑃𝑎𝑡ℎ(ℳ, 𝑠, 𝑠′).

In the following, we develop a DTMC interpretation of a
program, which forms the basis of subsequent discussion.

Definition 3.2. Let 𝒫 = (𝐶, 𝑖𝑛𝑖𝑡, 𝑉, 𝜑, 𝑇) be a program
and 𝜇 be a prior probability distribution of the test inputs.
The DTMC interpretation of 𝒫 is a DTMC ℳ𝒫 = (𝑆, 𝑃𝑟, 𝜇)
such that a state in 𝑆 is a pair (𝑣, 𝑙) where 𝑣 is a valuation
of 𝑉 and 𝑙 is a control location in 𝐶; and 𝑃𝑟 is defined as
follows: 𝑃𝑟((𝑣, 𝑙), (𝑣′, 𝑙′)) = 1 if and only if there exists a
guarded command 𝑔𝑐 = [𝑔]𝑓 such that 𝑇 (𝑙, 𝑔𝑐) = 𝑙′ and 𝑣 � 𝑔
and 𝑣′ = 𝑓(𝑣); otherwise 𝑃𝑟((𝑣, 𝑙), (𝑣′, 𝑙′)) = 0.

Note that in the above definition, each one-step transition
has probability 1 or 0 except the initial probability distribu-
tion 𝜇. Our optimal concolic testing strategy is defined based
on one particular abstraction of ℳ𝒫 , i.e., the one which
abstracts away the variable valuation, defined as follows.

Definition 3.3. Let 𝒫 = (𝐶, 𝑖𝑛𝑖𝑡, 𝑉, 𝜑, 𝑇) be a program
and ℳ𝒫 = (𝑆, 𝑃𝑟, 𝜇) be its DTMC interpretation. The data-
abstract DTMC interpretation of 𝒫 is a DTMC ℳ𝑎

𝒫 =
(𝑆𝑎, 𝑃 𝑟𝑎, 𝜇𝑎) such that 𝑆𝑎 = 𝐶. It is useful since we focus on
statement coverage in this work.

∙ 𝜇𝑎(𝑙) = 1 if 𝑙 is 𝑖𝑛𝑖𝑡; and 0 otherwise;
∙ and 𝑃𝑟𝑎 is defined as follows: for all 𝑙 ∈ 𝐶 and 𝑙′ ∈ 𝐶,
𝑃𝑟𝑎(𝑙, 𝑙

′) is

Σ{𝑃𝑟(𝜋)|∃𝑠, 𝑠′. 𝜋 ∈ 𝑃𝑎𝑡ℎ(ℳ𝒫 , (𝑠
′, 𝑙′)) ∧ 2𝑙𝑎𝑠𝑡(𝜋) = (𝑠, 𝑙)}

Σ{𝑃𝑟(𝜋)|∃𝑠. 𝜋 ∈ 𝑃𝑎𝑡ℎ(ℳ𝒫 , (𝑠, 𝑙))}
Intuitively, 𝑃𝑟𝑎(𝑙, 𝑙

′) is the probability of visiting 𝑙 and
immediately followed by 𝑙′, over the probability of reaching 𝑙.
For instance, the DTMC shown on the right of Figure 1 is the
data-abstract DTMC interpretation of the program on the
left, where each control location in the program becomes a
state in the DTMC and each control flow between two control
locations is associated with the corresponding conditional
probability. For instance, the probability 1

232
labeled with

the transition from state 1 to 2 states that the probability of
visiting state 2 after state 1 is 1

232
(if we assume a uniform

distribution among all test inputs).

The following proposition states that the probability of
reaching a control location 𝑙 is preserved in ℳ𝑎

𝒫 .

Proposition 3.4. Let 𝒫 = (𝐶, 𝑖𝑛𝑖𝑡, 𝑉, 𝜑, 𝑇) be a program
and 𝜇 be a prior probability distribution of the test inputs. For
all 𝑙 ∈ 𝐶, 𝑃𝑟ℳ𝑎

𝒫
(𝑟𝑒𝑎𝑐ℎ(𝑙)) = Σ𝑣∈𝑉 𝑎𝑙𝑉 {𝑃𝑟ℳ𝒫 (𝑟𝑒𝑎𝑐ℎ((𝑙, 𝑣)))}

where 𝑉 𝑎𝑙𝑉 is the set of all possible valuations of 𝑉 . �

The correctness of the proposition can be established by
showing the probability of reaching any 𝑙′ is

Σ𝑙∈𝐶(𝑃𝑟ℳ𝑎
𝒫
(𝑟𝑒𝑎𝑐ℎ(𝑙))× 𝑃𝑟𝑎(𝑙, 𝑙

′))

A test execution of 𝒫 can be naturally mapped to a path of
ℳ𝑎

𝒫 . For instance, the test execution with input 𝑥 = 𝑦 = 0
given the program shown in Figure 1 is mapped to the path
composed of state 1, 2, 3, 5, and 8. We say that a test
execution covers a state of ℳ𝑎

𝒫 if it covers the corresponding
control location of 𝒫. Furthermore, a path in ℳ𝑎

𝒫 uniquely
corresponds to a program path in 𝒫.

3.2 Optimal Strategy

Recall that a concolic testing strategy is a sequence of choices
among different test case generation methods. In this work,
we define the space for the choice to be:

{𝑅𝑇} ∪ {𝑆𝐸(𝑝)|𝑝 ∈ 𝑝𝑎𝑡ℎ(𝒫)}

where 𝑅𝑇 denotes random testing and 𝑆𝐸(𝑝) denotes sym-
bolic execution by solving the path condition associated with
path 𝑝. To compare the cost of different choices, we need a
way of measuring them. We focus on time cost in this work.
Let 𝑐𝑜𝑠𝑡 be a function which, given 𝑎 ∈ {𝑅𝑇} ∪ {𝑆𝐸(𝑝)|𝑝 ∈
𝑝𝑎𝑡ℎ(𝒫)} returns its time cost. For simplicity, the time cost
of generating a random test case is set to be 1 unit. The time
cost of 𝑆𝐸(𝑝) includes the time cost of encoding/solving the
path condition.

We measure the effectiveness of a choice in terms of the
probability of covering a set of states in 𝒫. Given a choice
𝑎 ∈ {𝑅𝑇} ∪ {𝑆𝐸(𝑝)|𝑝 ∈ 𝑝𝑎𝑡ℎ(𝒫)} and a set of states 𝑋 of
𝑀𝑎

𝒫 , we can compute the probability of covering exactly the
set of states 𝑋 with random testing as follows.

𝑃𝑟(𝑅𝑇,𝑋) = Σ𝜋∈𝑃𝑎𝑡ℎ𝑚𝑎𝑥(ℳ𝑎
𝒫)∧𝑠𝑡𝑎𝑡𝑒𝑠(𝜋)=𝑋𝑃𝑟(𝜋) (1)

For the example shown in Figure 1, 𝑃𝑟(𝑅𝑇, {1, 3}) is 1− 1
232

and 𝑃𝑟(𝑅𝑇, {1, 4, 5}) is 0 since there is no test case which
covers 1, 4, and 5 at the same time.

If the choice is symbolically executing program path 𝑝,
i.e., 𝑆𝐸(𝑝), we know that all states in the path 𝑝, written
as 𝑠𝑡𝑎𝑡𝑒𝑠(𝑝), must be covered. Let Π = {𝜋|𝑠 = 𝑙𝑎𝑠𝑡(𝑝) ∧ 𝜋 ∈
𝑃𝑎𝑡ℎ𝑚𝑎𝑥(𝑠,ℳ𝑎

𝒫) ∧ 𝑠𝑡𝑎𝑡𝑒𝑠(𝜋) ∪ 𝑠𝑡𝑎𝑡𝑒𝑠(𝑝) = 𝑋} be the set of
all maximal paths which start with the last state of path 𝑝
and, together with 𝑝, cover all and only states in 𝑋. The
probability of covering all and only states 𝑋 with 𝑆𝐸(𝑝),
written as 𝑃𝑟(𝑆𝐸(𝑝), 𝑋), is defined as follows.

𝑃𝑟(𝑆𝐸(𝑝), 𝑋) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑠𝑡𝑎𝑡𝑒𝑠(𝑝) ̸⊆ 𝑋

0 if Π = {} ∧ 𝑠𝑡𝑎𝑡𝑒𝑠(𝑝) ̸= 𝑋

1 if Π = {} ∧ 𝑠𝑡𝑎𝑡𝑒𝑠(𝑝) = 𝑋

Σ𝜋∈Π𝑃𝑟(𝜋) else

(2)

Towards Optimal Concolic Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 2: MDP with cost Model

For the example shown in Figure 1, 𝑃𝑟(𝑆𝐸(13), {1, 3, 5})
is 4

5
, i.e., by symbolically execute path 1 and 3, we have

probability 4
5

of covering state 1, 3, and 5. For another
example, 𝑃𝑟(𝑆𝐸(13), {1, 5}) is 0 since we must cover 3.

In this work, we assume that the choice can be made
depending on whether certain states have been covered or
not. This makes sense intuitively since if all states along a
path have been covered, it is a good idea not to apply symbolic
execution to that path. A strategy is thus a function which
takes as input information on whether each control location
in 𝒫 has been covered or not, and returns a choice of test case
generation methods. To compare different concolic testing
strategies systematically, we build the following model in the
form of a Markov Decision Process (MDP) with Costs.

Definition 3.5. Let ℳ𝑎
𝒫 = (𝑆, 𝑃𝑟, 𝜇) be the data-abstract

DTMC interpretation of a program 𝒫. We define 𝒟𝒫 =
(𝐶𝑜𝑣𝑒𝑟𝑒𝑑,𝐴𝑐𝑡, 𝜑, 𝑇, 𝐶) be an MDP with Costs such that

∙ 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 ⊆ P𝑆, where P𝑆 is the power set of 𝑆, i.e.,
each member of P𝑆 is a set of states in 𝑆 (i.e., those
which have been covered);

∙ 𝐴𝑐𝑡 = {𝑅𝑇} ∪ {𝑆𝐸(𝑝)|𝑝 ∈ 𝑝𝑎𝑡ℎ(𝒫)};
∙ 𝜑 ∈ 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 is the initial state which is ∅;
∙ 𝑇 is defined such that 𝑇 (𝑀,𝑎) where 𝑀 ∈ 𝐶𝑜𝑣𝑒𝑟𝑒𝑑
and 𝑎 ∈ 𝐴𝑐𝑡 is a probability distribution 𝛽 defined as
follows: 𝛽(𝑁) = Σ𝑋:P𝑆. 𝑋∪𝑀=𝑁𝑃𝑟(𝑎,𝑋) for all 𝑁 ∈
𝐶𝑜𝑣𝑒𝑟𝑒𝑑. 𝑃𝑟(𝑎,𝑋) is defined by (1) and (2) above.

∙ 𝐶 associates a cost for each 𝑎 ∈ 𝐴𝑐𝑡 as defined by
function 𝑐𝑜𝑠𝑡.

For instance, given the following simple program,

void myfunc2(int x) {

1. if (x >= 0) {

2. x++;}

3. else {x--;}

4. return x;

}

we can obtain the data-abstract Markov Chain model shown
on the left of Figure 2, and the corresponding 𝒟𝒫 shown
on the right. The initial state of 𝒟𝒫 is ∅, i.e., none of the
states have been covered. Applying 𝑅𝑇 at the initial state,

we have a distribution such that with probability 0.5 we reach
state {1, 2, 4} (i.e., state 1, 2, and 4 are covered) and with
probability 0.5 we reach state {1, 3, 4}. If instead symbolic
execution on path ⟨1, 2⟩ is applied (i.e., 𝑆𝐸(12)), we have
probability 1 of reaching state {1, 2, 4}. Note that if we ap-
ply symbolic execution on path ⟨1, 2⟩ at state {1, 2, 4}, we
reach {1, 2, 4} again with probability 1, which is represented
by the self-looping transition at state {1, 2, 4}. Assuming
that 𝑐𝑜𝑠𝑡(𝑅𝑇) = 1, 𝑐𝑜𝑠𝑡(𝑆𝐸(12)) = 𝑐𝑜𝑠𝑡(𝑆𝐸(13)) = 2 and
𝑐𝑜𝑠𝑡(𝑆𝐸(124)) = 𝑐𝑜𝑠𝑡(𝑆𝐸(134)) = 3, we can then compute
the expected cost of a concolic testing strategy based on the
accumulated cost of each choice. For instance, the expected
cost of always applying 𝑅𝑇 is 2, whereas the expected cost
of applying 𝑆𝐸(12) and then 𝑆𝐸(13) is 4.

With Definition 3.5, we can see that a strategy for concolic
testing is equivalent to a policy of 𝒟𝒫 , i.e., a function from
𝑆′ to 𝐴𝑐𝑡. The following then answers RQ1.

Answer to RQ1: The optimal strategy is the policy of 𝒟𝒫
which has the minimum expected cost.

For instance, in the example shown in Figure 2, the opti-
mal strategy is the one which applies 𝑅𝑇 always (with an
expected cost 2). The problem of finding the optimal strategy
is thus reduced to the problem of finding the policy with the
minimum expected cost, which can be solved using existing
methods [27] like value iteration, policy iteration or solving
a linear programming problem. The computational complex-
ity of finding the optimal strategy is thus bounded by the
complexity of identifying the optimal policy.

Answer to RQ2: The complexity of identifying the op-
timal strategy is strongly polynomial in the number of
states in 𝒟𝒫 , which in turn is exponential in the number
of control locations in 𝒫.

3.3 Evaluating Existing Heuristics

In the following, we conduct experiments to answer RQ3
empirically. That is, we compare the performance of the
optimal strategy with that of the heuristics-based ones [6, 7,
23, 33, 38, 42]. The goal is to see whether existing heuristics
are reasonably effective.

We randomly generate a set of Markov Chain models
(with no unreachable states) which we take as abstractions
of programs. Due to the high complexity in computing the
optimal strategy, we generate models containing 5 to 20
states only using the method in [46]. For every state, with
probability 0.5, we generate a branch, i.e., the expected
branch density is 0.5. We randomly generate a transition
probability for each transition. To mimic low-probability
program paths, we generate transitions of probability as low
as 1e-4 with probability 0.8 for 5-states models (to avoid
not having low-probability transitions) and 0.2 (to avoid not
having too many low-probability transitions) for 10, 15, or 20-
states models. In order to simplify the experiments, instead

ICSE ’18, May 27-June 3, 2018, Gothenburg, SwedenXinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin

of associating a cost of symbolic execution for each path, we
associate each transition in the model with a positive integer
cost4 within 1000. We construct the corresponding MDP with
Cost models for each Markov Chain and use PRISM [32] to
compute the optimal strategy.

The results are shown in Table 1, where first column shows
the strategy and the rest shows the results obtained with 50
random 5-state Markov Chains, 50 random 10-state Markov
Chains, etc. Row optimal is the expected cost of the optimal
strategy, which has been normalized to 1. The rest of the
rows are the result of random testing (RT), the four strategies
in KLEE [7]: the default random-cover new (RCN), random
state search (RSS), random path selection (RPS), and depth
first search (DFS), the directed automated random testing in
DART [22], generational search (GS) in SAGE [23], context
guided search (CGS) in [42], and sub-path guided search
(SGS) in [33]. The length of sub-path in SGS is set to be 20%
of the the total number of states in the model. The last row
is to be ignored for now.

We use Java to implement all approaches. For each Markov
Chain model, we repeat each strategy 1000 times and obtain
the mean cost (to cover all the states). Note that for random
testing, it may take an extremely long time to cover all states,
thus we set a limit of 1000000 (test cases). From the results,
we observe that all existing heuristics result in significantly
higher costs than the optimal cost. Even the best performance
heuristics has a cost which is one order of magnitude higher
than the optimal one. Among all strategies, the strategy
which adopts random testing every time performs the worst
when there are 20 states. The results show that existing
heuristics have much room to improve. Note that the results
show in Table 1 should be taken with a grain of salt since
they are based randomly generated Markov Chain models,
which may not be representative of real programs.

Answer to RQ3: Existing heuristics could be improved.

4 APPROXIMATING OPTIMALITY

Based on the discussion in Section 3, it is clear that identify-
ing the optimal strategy in practice is infeasible due to its
high complexity, as well as difficulties in identify the proba-
bility of program paths and the cost of symbolic execution.
In the following, we propose a method to approximate the
optimal strategy in practice. Our proposal includes a way of
approximating ℳ𝑎

𝒫 , a way of approximating function 𝑐𝑜𝑠𝑡,
and a greedy algorithm for identifying optimal policy.

4.1 Estimating ℳ𝑎
𝒫 and Function 𝑐𝑜𝑠𝑡

In the following, we present an approach to estimate ℳ𝑎
𝒫 =

(𝑆, 𝑃𝑟, 𝜇). Note that this is the subject of a recent line of re-
search known as probabilistic symbolic execution [15, 18, 21].
However, probabilistic symbolic execution has a high com-
plexity (due to the underlying model counting techniques [9]).

4This effectively assumes solving a constraint 𝜑 takes less time than
solving 𝜑 ∧ 𝛼, which may not be always true.

5 states 10 states 15 states 20 states

Optimal 1 1 1 1

RT 138.9 11.3 44.2 114.7

RCN 1.7 14.4 15.1 12.7
RSS 12.8 50.7 64.0 68.1

RPS 12.8 50.6 63.9 68.5

DFS 7.1 27.4 21.8 18.6
DART 1.8 13.0 12.8 13.0

GS 1.9 13.5 13.9 13.3

CGS 1.8 12.6 13.6 13.8
SGS 11.2 32.4 29.4 25.5

G 2.1 4.8 3.1 4.8

Table 1: Simulated experiments

We thus apply a lightweight approach, i.e., we estimate 𝑃𝑟
based on the test cases which have been obtained. The es-
sential problem that we would like to address is: if we have
observed certain events (i.e., test cases which cover certain
program paths), how do we estimate the probability of the
seen events and those unseen events (i.e., test cases which cov-
er other program paths)? This problem has been studied for
decades and a number of methods have been proposed, e.g.,
the Laplace estimation [13] and Good-Turing estimation [19].
We refer the readers to [19] for comprehensive discussion on
when different estimations are effective. In the following, we
show how to estimate ℳ𝑎

𝒫 based on the Laplace estimation.
Assume that we have obtained a set of test executions 𝑋,

we can estimate 𝑃𝑟 as follows.

Definition 4.1. Given any state 𝑠 ∈ 𝑆, let #𝑠 be the
number of times state 𝑠 is visited by samples in 𝑋. For any
𝑡 ∈ 𝑆, let #(𝑠, 𝑡) be the number of one-step transition from
state 𝑠 to 𝑡 in 𝑋. For any state 𝑠, if it is impossible for 𝑠
to reach another control location 𝑡 in 𝒫, we set 𝑃𝑟(𝑠, 𝑡) to
be 0; otherwise, the Laplace estimation sets 𝑃𝑟(𝑠, 𝑡) to be
#(𝑠,𝑡)+1
#𝑠+𝑛

, where 𝑛 is the total number of states 𝑠 can reach

with one step.

Intuitively, if a transition (i.e., a control flow) from state 𝑠
to 𝑡 is not observed in 𝑋 because 𝑃𝑟(𝑠, 𝑡) is small, the Laplace
estimation sets the transition probability to be 1

#𝑠+𝑛
. It is

easy to see that the estimated 𝑃𝑟 converges to the actual 𝑃𝑟
with an unbounded number of samples. In the following, we
write 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝒫, 𝑋) to denote the estimated ℳ𝑎

𝒫 .
Estimating function 𝑐𝑜𝑠𝑡, i.e., the cost of constraint solving,

is highly nontrivial due to the sophisticated constraint solving
techniques adopted by constraint solvers like Z3 [14]. It is
itself a research topic [29, 31]. In this work, we adopt the
approach in [29], which works as follows. Firstly, the authors
of [29] collected the time costs of solving constraints generated
from analyzing a set of real-world programs through symbolic
execution. Assuming the cost of constraint solving is the
weighted sum of the primitive operations (e.g., the Add and
Mul operation) in the constraint, they then estimate the
weight of each primitive operation type through function
fitting. Afterwards, given a constraint 𝑐, its solving cost is

Towards Optimal Concolic Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

estimated as the weighted sum of all primitive operations in
𝑐. For example, if 𝑐 is 𝑎 * 𝑏 > 0, its solving cost is the sum of
weighted cost of multiplication and that of the greater-than
comparison. We refer the readers to [29] for details.

4.2 A Greedy Algorithm

Even with a reasonable approximation of ℳ𝑎
𝒫 and function

𝑐𝑜𝑠𝑡, the algorithm for identifying the optimal strategy re-
mains overly complicated (refer to the answer to RQ2). In
the following, we present a greedy algorithm with much lower
complexity. The idea is to estimate ℳ𝑎

𝒫 on-the-fly and apply
a test case generation method which improves test coverage
in the most cost-effective way locally based on the estimation.

The details are shown in Algorithm 1. At line 1, we start
with an empty set of test cases. At line 2, we initialize a
set 𝑡𝑜𝐼𝑔𝑛𝑜𝑟𝑒 for storing paths which are to be ignored for
symbolic execution. The loop from line 3 to 14 iteratively
generates test cases until the coverage criteria is achieved.
During each iteration, we first construct an estimation of
ℳ𝑎

𝒫 at line 4. Afterwards, we call function 𝑙𝑜𝑐𝑎𝑙𝑂𝑝𝑡𝑖𝑚𝑎𝑙 to
choose the local-optimal test generation method. If the choice
is random testing, we generate a random test case at line
7; otherwise, we apply symbolic execution to the selected
program path. If the selected path is infeasible or solving the
path condition times out, we add the path into 𝑡𝑜𝐼𝑔𝑛𝑜𝑟𝑒.

Function 𝑙𝑜𝑐𝑎𝑙𝑂𝑝𝑡𝑖𝑚𝑎𝑙(ℳ, 𝑋, 𝑡𝑜𝐼𝑔𝑛𝑜𝑟𝑒) is shown in Algo-
rithm 2. Intuitively, we define the “reward” of a test gener-
ation method to be the number of uncovered states which
is expected to be covered with the newly generated test
case and select the method with the largest expected reward
per unit of cost. At line 2, we first compute the expected
reward of random testing based on the current estimation
ℳ = (𝑆, 𝑃𝑟, 𝜇). It is computed by extending ℳ with reward
(i.e., 1 unit reward is associated with one unvisited state)
and solving the problem of expected reward using existing
methods [2]. In the following, we show how it can be solved
by solving an equation system.

Let 𝑅𝑠 where 𝑠 ∈ 𝑆 be the reward of visiting 𝑠. We build
an equation system as follows.

𝑅𝑠 =

{︃
1 + Σ𝑡∈𝑆{𝑃𝑟(𝑠, 𝑡)×𝑅𝑡} if 𝑠 ̸∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

Σ𝑡∈𝑆{𝑃𝑟(𝑠, 𝑡)×𝑅𝑡} if 𝑠 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

The expected reward of random testing is then: Σ𝑠∈𝑆{𝜇(𝑠)×
𝑅𝑠}. Note that we associate one reward for visiting each
unvisited state since our goal is to cover every state.

Next, we compare the expected reward of random testing
to that of symbolic execution. Ideally, we would compute
the cost of symbolically executing every path as well as the
corresponding reward, and then choose the most profitable
one. However, the number of such paths is often huge (i.e.,
infinite if there are loops). Thus, we heuristically focus on
paths which contain no uncovered states except the ending
state. This way, it is guaranteed to visit at least 1 unvisited
state if symbolic execution is applied. Note that similar to [12,
22], we assume that a bound on the number of iterations
for any loop is provided and we only consider paths with

Algorithm 1: 𝑔𝑟𝑒𝑒𝑑𝑦(𝒫, 𝜇) where 𝒫 is a program and
𝜇 a prior distribution on test inputs

1 let 𝑋 be an empty set of test cases;

2 let 𝑡𝑜𝐼𝑔𝑛𝑜𝑟𝑒 be an empty set of paths;

3 while there is an unvisited control location do
4 let ℳ be 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝒫, 𝑋);

5 let 𝑎 := 𝑙𝑜𝑐𝑎𝑙𝑂𝑝𝑡𝑖𝑚𝑎𝑙(ℳ, 𝑋, 𝑡𝑜𝐼𝑔𝑛𝑜𝑟𝑒);

6 if 𝑎 is random testing then
7 randomly generate a test case 𝑡 according to 𝜇;

8 add 𝑡 into 𝑋;

9 if 𝑎 is 𝑆𝐸(𝑝) then
10 solve 𝑃𝐶𝑝 to generate a test case 𝑡;

11 if 𝑝 is unsatisfiable or solving 𝑃𝐶𝑝 times out

then
12 add 𝑝 into 𝑡𝑜𝐼𝑔𝑛𝑜𝑟𝑒;

13 else
14 add 𝑡 into 𝑋;

15 return 𝑋;

Algorithm 2: 𝑙𝑜𝑐𝑎𝑙𝑂𝑝𝑡𝑖𝑚𝑎𝑙(ℳ𝑎
𝒫 , 𝑋, 𝑡𝑜𝐼𝑔𝑛𝑜𝑟𝑒)

1 let 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 be the set of visited states given 𝑋;

2 let 𝑟𝑒𝑤𝑎𝑟𝑑 be the expected reward of random testing;

3 let 𝑡𝑜𝑅𝑒𝑡𝑢𝑟𝑛 be 𝑟𝑎𝑛𝑑𝑜𝑚 𝑡𝑒𝑠𝑡𝑖𝑛𝑔;

4 for all path 𝜋 s.t. the only uncovered state is 𝑙𝑎𝑠𝑡(𝜋) do
5 if 𝜋 ̸∈ 𝑡𝑜𝐼𝑔𝑛𝑜𝑟𝑒 then
6 let 𝑟𝑒𝑤𝑎𝑟𝑑𝜋 be the expected reward of solving 𝜋;

7 if 𝑟𝑒𝑤𝑎𝑟𝑑𝜋/𝑐𝑜𝑠𝑡(𝜋) > 𝑟𝑒𝑤𝑎𝑟𝑑 then
8 𝑡𝑜𝑅𝑒𝑡𝑢𝑟𝑛 := 𝑆𝐸(𝜋); 𝑟𝑒𝑤𝑎𝑟𝑑 :=

𝑟𝑒𝑤𝑎𝑟𝑑𝜋/𝑐𝑜𝑠𝑡(𝜋);

9 return 𝑡𝑜𝑅𝑒𝑡𝑢𝑟𝑛;

fewer iterations. The expected reward of applying symbolic
execution to the path ending with state 𝑠 is denoted as
𝑅𝑠, which can be obtained using the same equation system
discussed above.

The details are shown in Algorithm 2 (line 4 to 8). At line
5, we check if the selected path 𝜋 is to be ignored. If it is not,
we compute the expected reward of solving 𝜋, by solving the
same equation system to obtain 𝑅𝑠 where 𝑠 is the ending
state of 𝜋. Intuitively, this is because by solving the path 𝜋,
we have probability one of visiting 𝑠 and obtaining all of its
expected reward. That is, if 𝑙𝑎𝑠𝑡(𝜋) is 𝑠, 𝑟𝑒𝑤𝑎𝑟𝑑𝜋 is 𝑅𝑠. At
line 7, we compare the reward per unit cost (where function
𝑐𝑜𝑠𝑡 is approximated as discussed in Section 4.1) of 𝑆𝐸(𝜋)
and the current best choice, and keep the better one. Note
that we assume the path condition is precise. If a test input
generated by solving the path condition diverges and thus
not reach 𝑠, we add the path to 𝑡𝑜𝐼𝑔𝑛𝑜𝑟𝑒 as well.

In the following, we illustrate how the algorithm works for
the program shown in Figure 1. For illustration purpose, we

ICSE ’18, May 27-June 3, 2018, Gothenburg, SwedenXinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin

1/2
1/2

1

1

2

1/2

1/2

34

1/2

1/2

5

1/2

1/2 6

7

8

1/3
2/3

1

1

2

1/3

2/3

34

2/3

1/3

5

1/2

1/2 6

7

8

1/10
9/10

1

1

2

1/10

9/10

34

9/10

1/10

5

1/2

1/2 6

7

8

Figure 3: Abstraction

assume that solving a linear (in)equality or their conjunc-
tions has time cost 4, solving a non-linear (in)equality has
cost of 10; and solving a boolean combination of non-linear
(in)equalities has cost of 50. Initially, since we have no test
executions yet, the estimation ℳ is shown at the left of
Figure 3 where uncovered states are dash-lined. Note that
all outgoing transitions from the same state have the same
probability. Based on this estimation, we compute that the
expected reward of random testing, by solving the following
equation systems.

𝑅1 = 1 + 0.5 *𝑅2 + 0.5 *𝑅3

𝑅2 = 1 +𝑅3

𝑅3 = 1 + 0.5 *𝑅4 + 0.5 *𝑅5

𝑅5 = 1 + 0.5 *𝑅8 + 0.5 *𝑅6

𝑅6 = 1 + 0.5 *𝑅8 + 0.5 *𝑅7

𝑅7 = 1 +𝑅8

𝑅4 = 𝑅8 = 1

The expected reward of random testing is 𝜇(𝑠1) *𝑅1 which
is 4.875. Since all states are unvisited, the candidate path
we select for symbolic execution is the one containing state
1 only. Since the path condition is true, applying symbolic
execution to this path is the same as random testing. Note
that this implies that we always start with random testing.
Assume that the random test case we generate covers control
location 1, 3, 5 and 8. The estimation is then updated, as
shown on the middle of Figure 3. Next, we compute the
expected reward of random testing by solving the following
equation systems.

𝑅1 =
1

3
*𝑅2 +

2

3
*𝑅3

𝑅2 = 1 +𝑅3

𝑅3 =
1

3
*𝑅4 +

2

3
*𝑅5

𝑅4 = 1

𝑅5 =
2

3
*𝑅8 +

1

3
*𝑅6

𝑅6 = 1 + 0.5 *𝑅8 + 0.5 *𝑅7

𝑅7 = 1 +𝑅8

𝑅8 = 0

We have 𝑅1 = 1, 𝑅2 = 5
3
, 𝑅4 = 1 and 𝑅6 = 1.5. The

candidate paths for symbolic execution include the path from
1 to 2, the path from 1, 3, to 4, and the path from 1, 3, 5, to 6.
The costs are 4, 50, and 50 respectively. The expected rewards
are 5

3
, 1, and 1.5 respectively. Thus, the chosen method is

random testing. For simplicity, assume that the first 8 random
test executions all cover 1, 3, 5, and 8. As a result, ℳ is
updated as shown on the right of Figure 3. The expected
reward of random testing is computed as 0.335, whereas the
expected reward of solving the path from 1 to 2 is 1.235. We
thus conclude that the latter is more cost-effective (with a
reward per cost 0.30875) and thus apply symbolic execution
to the path. Intuitively, we switch from random testing to
solving certain program path only when covering the path
requires a large number of random test cases, which would
cost more than that of symbolic execution.

The complexity of Algorithm 1 is reasonable. In order to
choose the right test case generation method, during each
round, we pay the price of solving an equation system whose
number of variables equals to the number of control locations
in the program. Modern equation system solvers are often
rather efficient and the overhead is reasonable. We can further
optimize the algorithm for solving the equation system since
𝑅𝑠 changes after one iteration only if 𝑠 can reach a state
which has been newly covered.

5 EVALUATION

To answer RQ4, we first compare the performance of our
greedy algorithm against the optimal strategy using the
randomly generated Markov models (as in Section 3.3). That
is, we run the greedy algorithm, assuming that we know the
cost of constraint solving but not the transition probability,
and measure its performance. In other words, the transition
probability is estimated on-the-fly as shown in Algorithm 1.
The results are shown in the last row of Table 1. It can
be observed that compared with the existing heuristics, the
greedy algorithm offers better performance.

Towards Optimal Concolic Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Answer to RQ4: It is possible to design a practical algo-
rithm to approximate the optimal strategy.

So far we have experiment with different strategies on
abstract models. In order to answer 𝑅𝑄4 and 𝑅𝑄5 based on
real-world programs, we implement our approach based on K-
LEE [7]. Note that KLEE is a symbolic execution engine, i.e.,
it only maintains the symbolic values of symbolic variables.
We thus first extend KLEE with a concolic execution engine
which maintains both the symbolic and concrete values of
each variable. As a result, we are able to switch between
random testing and symbolic execution at runtime according
to the greedy algorithm (if necessary). During (symbolic or
concrete) execution, when a branching statement is encoun-
tered, we fork a state which corresponds to the un-selected
branch, without considering its feasibility.

To estimate ℳ𝑎
𝒫 , we first construct the inter-procedural

control graph (ICFG), whose nodes are the states of ℳ𝑎
𝒫 .

The transition probability is then estimated on-the-fly as in
Algorithm 1. Recall that we need to solve an equation system
to select the local optimal test generation method. In our im-
plementation, we use Eigen [16] to solve the equation system.
When the choice is symbolic execution, the path constraint
of the symbolic state is solved to check the state’s feasibility.
If the state is not feasible, the path is marked infeasible. If
the choice is random testing, we generate a random test case
with concrete values.

Experimental Setup To evaluate the effectiveness of different
concolic testing strategies, we need a set of programs which
contain complicated path conditions (so that constraint solv-
ing the path conditions takes a non-trivial amount of time)
as well as non-trivial control flow (so that different strategies
may choose different test generation methods or paths). We
use the programs in GNU Scientific Library (GSL) [25]. Func-
tions in GSL often have both complex arithmetic operations
and complex control flow. GSL has been previously analyzed
using KLEE [29, 39]. We rank the functions in GSL using the
code coverage which was achieved in the previous study for
each function and choose the functions with the lowest cover-
age. Table 2 lists the functions used in our experiment, where
the second column shows the number of nodes in the ICFG of
the function (i.e., the number of basic blocks in the function
or invoked functions). Note that we filter functions which
have complex input types such as function pointers, complex
arrays and complex struts. To analyze these programs, we
have implement the method in [40] for analyzing floating
point programs. The basic idea is to convert floating point
operations to the integer simulation functions. We use soft-
float [43] as the library in our implementation. Furthermore,
under-constrained symbolic execution [17] is implemented for
analyzing arbitrary functions.

For baseline comparison, we compare our approach with
the four search heuristics supported in KLEE as explained

Table 2: Programs in the experiments

Name #N Function in GSL
FG0_ser 1822 coulomb_FG0_series
FGmhalf 1819 coulomb_FGmhalf_series
dilog_xge0 1167 dilog_xge0
Chi_e 1233 gsl_sf_Chi_e
bessel_Inu 1249 gsl_sf_bessel_Inu_scaled_asymp_unif_e
bessel_JY 2175 gsl_sf_bessel_JY_mu_restricted
bessel_Knu 1249 gsl_sf_bessel_Knu_scaled_asymp_unif_e
bessel_cos 492 gsl_sf_bessel_cos_pi4_e
bessel_sin 492 gsl_sf_bessel_sin_pi4_e
coupling 1179 gsl_sf_coupling_6j_e
elljac_e 1524 gsl_sf_elljac_e
exprel_n_e 1769 gsl_sf_exprel_n_e
hyperg_U 1719 gsl_sf_hyperg_U_large_b_e
lngamma_e 1677 gsl_sf_lngamma_e
lnpoch_sgn 1925 gsl_sf_lnpoch_sgn_e
lnpoch_pos 1836 lnpoch_pos
cyc 1116 solve_cyc_tridiag
cyc_non 1141 solve_cyc_tridiag_nonsym
tri 1104 solve_tridiag
tri_non 1092 solve_tridiag_nonsym

in Section 3.3. Notice that tools implementing other search-
ing strategies, e.g., [23, 33, 42], are either not maintained
or target different programming languages. Each function is
analyzed using 6 strategies and we measure the instruction
coverage achieved with different timeouts. Our experiments
were conducted on a server having 64GB RAM and 3.2GHz
XEON CPUs with 16 cores. The timeout for each constraint
solving is 10 seconds. The cost of constraint solving is esti-
mated using the formula in [29]. Each experiment is repeated
3 times and we report the average as the result. Our imple-
mentation and programs are available at [30].

Evaluation Results Table 3 shows the coverage achieved for
each function with a timeout of 5 minutes, 15 minutes and
30 minutes respectively, where column G is the result of
our greedy algorithm and R is the always random testing
strategy. The winner for each setting is highlighted in bold.
Note that due to randomness, it is not always guaranteed
that better coverage will be achieved with more time. It can
be observed that our greedy algorithm not only achieves
much better coverage but also achieves it much faster. For
instance, after 5 minutes, our greedy algorithm covers 72.6%
of the instructions whereas all KLEE strategies cover less
than 30%. After 30 minutes, our coverage is 76.9% whereas
KLEE strategies are less than 37%. Note that random testing
achieves better performance than KLEE strategies as well
(although worse than our strategy). This result suggests that
existing concolic testing strategies should better-integrate
random testing and our strategy offers an effective way to
achieve that.

Figure 4 visualizes the trend of coverage over time for each
strategy. It can be observed that within one minute, our
greedy strategy is able to achieve a much higher coverage
than those in KLEE. This is because we are able to strate-
gically choose the “most” rewarding method each time and
cover those easier-to-cover instructions quickly. Afterward-
s, our strategy slowly gains more coverage by solving path

ICSE ’18, May 27-June 3, 2018, Gothenburg, SwedenXinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

Av
er

ag
e

co
ve

ra
ge

Analysis time

G
RCN
RSS
RPS
DFS

R

Figure 4: Average coverage w.r.t. analysis time.

Programs
5 Minutes 15 Minutes 30 Minutes
SE RT SE RT SE RT

FG0_ser 0 3 3 2 3 4
FGmhalf_series 9 2 16 1 4 1

dilog_xge0 145 22 214 27 260 20
Chi_e 89 1 77 25 49 33

bessel_Inu 28 3 52 10 47 30

bessel_JY_mu 19 1 0 7 40 7
bessel_Knu 22 9 62 23 76 37

bessel_cos 23 3 57 7 51 5

bessel_sin 23 3 57 6 42 5
coupling_6j 23 34722 23 103926 23 137164

elljac_e 64 47 50 55 143 44

exprel_n_e 36 2 84 1 302 3
hyperg_U 9 19 12 28 9 11

lngamma_e 5 111 6 272 11 155
lnpoch_sgn 42 2 133 6 249 7

lnpoch_pos 24 6 54 16 52 17

cyc_tridiag 0 7676 0 20989 0 32337
cyc_tridiag_non 0 8203 0 21204 0 31134

tridiag 0 7731 0 20901 0 30088

tridiag_non 0 7672 0 20553 0 30281

Table 4: Number of times of RT and SE

conditions which are hard to solve or generating random test
cases. In general, other strategies gain slightly more coverage
after the first minute too, although not always. In a few cases,
e.g., dilog_xge0, a boost in the coverage is observed with the
RPS strategy at 15 minutes timeout. This is likely because
the strategy switches to solving a different path, which leads
to many uncovered instructions.

In order to get a view on the choice of test case gener-
ation methods by our strategy, we summarize in Table 4
the number of times random testing and symbolic execution
are applied. Note that each entry in the table corresponds
to a different run with different timeout and thus it is not
guaranteed that the numbers in the 30 minutes’ column are
the largest. It can be observed that our strategy does not
always favor one method over another. Furthermore, the ratio

between the number of times random testing is chosen and
that of symbolic execution varies significantly from function
to function. For instance, for the last four functions, due to
the complex path conditions, random testing is consistently
the choice, which turns out to be effective in achieving high
coverage. Function exprel_n_e shows another extreme, i.e.,
symbolic execution is often the choice due to its simple con-
straints. This suggests that our strategy adapts to different
functions.

Answer to RQ5: Our greedy algorithm outperforms ex-
isting heuristics in KLEE.

Threats to Validity. Our test subjects are all numeric func-
tions and thus the results could be biased. We plan to apply
the proposed approach to other programs (e.g., programs
operating on non-trivial data structures) to further validate
its effectiveness in general.

6 RELATED WORK

This work is closely related to many existing searching s-
trategies for concolic testing. Besides those mentioned in
previous sections, there are other search heuristics. In [14],
Liu et al. proposed to empirically predict the cost of solving
a path constraint and prioritizes those paths with smaller
solving cost. In [38], Park et al. proposed the CarFast strate-
gy, which always selects a branch whose opposite branch is
not yet covered, and has the highest number of statements
control-dependent on that branch. Xie et al. [48] introduced
a fitness guided path exploration technique, which calculates
fitness values of execution paths and branches to guide the
next execution towards a specific branch. The fitness function
measures how close a discovered path is to a not-yet-covered
branch. Marinescu et al. [36] guides symbolic execution to-
wards the software patches. It exploits a provided test suite
to identify a good test case and uses symbolic execution with
several heuristics to generate more related inputs to test the
patches. In [42], Seo et al. proposed the context-guided search
strategy which selects a branch under a new context (i.e., a lo-
cal sequence of branch choices) for the next input generation.
In [8], Cadar et al. applies a Best-First Search strategy, which
checks all execution states and forces symbolic execution to-
wards dangerous operations (e.g., a pointer de-reference).
Compared with the above-mentioned approaches, ours is the
first one to formally define what is the optimal strategy and
subsequently develop a practical algorithm. We provide a
framework for systematically comparing the effectiveness of
random testing and symbolic execution.

This work is related to work on combining random test-
ing and symbolic execution. Besides [3, 4] which have been
discussed in Section 1, Kong et al. [31] discussed different
strategies on combining random testing and symbolic ex-
ecution in the setting of verifying hybrid automata. They
too make use of transition probability and cost in choosing
where to apply symbolic execution. However, their approach
remains a heuristics (i.e., choosing a branch with low cost,

Towards Optimal Concolic Testing ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Programs
5 Minutes (%) 15 Minutes (%) 30 Minutes (%)

G RCN RSS RPS DFS R G RCN RSS RPS DFS R G RCN RSS RPS DFS R
FG0_ser 96.8 14.8 14.8 14.8 14.8 94.7 96.8 14.8 14.8 14.8 14.8 96.8 94.7 14.8 14.8 14.8 14.8 98.8
FGmhalf 95.1 19.1 19.1 19.1 13.8 96.9 95.1 19.1 19.1 19.1 13.8 96.9 98.7 19.1 19.1 19.1 13.8 98.7
dilog_xge0 36.0 25.3 25.0 33.7 16.6 35.9 36.0 25.3 25.3 69.5 17.7 41.8 35.5 27.2 25.3 72.5 17.7 42.4
Chi_e 70.7 12.0 12.0 12.0 15.2 70.7 70.7 12.0 12.0 12.0 15.2 70.7 70.7 12.0 12.0 12.0 15.2 70.7
bessel_Inu 95.6 29.1 14.3 29.1 10.3 74.4 95.6 29.1 14.8 29.1 11.8 95.6 95.6 29.1 14.8 29.1 11.8 95.6
bessel_JY 36.2 30.5 30.5 30.5 28.7 27.9 31.0 30.5 30.5 30.5 28.7 29.5 43.7 30.5 30.5 30.5 28.7 38.4
bessel_Knu 95.5 29.2 14.4 29.2 10.4 74.2 95.5 29.2 14.9 29.2 11.9 95.5 95.5 29.2 14.9 29.2 11.9 95.5
bessel_cos 89.9 43.4 23.9 50.4 14.2 85.5 92.0 53.1 29.2 59.3 14.2 88.8 89.9 62.5 31.3 72.6 14.2 88.2
bessel_sin 89.9 44.9 23.9 50.4 14.2 84.3 89.9 53.1 29.2 59.3 14.2 89.9 92.0 62.5 31.3 72.6 14.2 94.7
coupling 95.9 20.0 20.0 20.0 17.3 95.5 95.9 22.8 22.8 22.8 22.8 95.9 95.9 22.8 22.8 22.8 22.8 95.9
elljac_e 13.1 20.4 20.4 20.4 11.1 12.5 36.3 20.4 20.4 20.4 11.1 20.2 28.6 20.4 20.4 20.4 11.1 13.1
exprel_n_e 32.9 24.5 23.9 25.8 19.1 25.5 33.9 28.0 25.8 34.4 19.1 27.7 36.8 33.8 27.4 39.5 25.0 32.6
hyperg_U 38.6 18.4 17.7 18.7 15.9 26.6 53.8 18.7 18.4 18.7 15.9 37.9 54.0 18.7 18.6 18.7 15.9 30.5
lngamma_e 60.8 38.4 34.3 38.4 24.9 28.1 57.6 38.4 37.9 41.8 24.9 48.0 57.6 47.5 38.4 47.5 40.1 50.1
lnpoch_sgn 51.0 31.6 22.0 32.8 14.4 43.4 39.6 31.9 24.7 33.1 14.4 64.2 70.1 33.4 31.5 34.0 14.4 56.1
lnpoch_pos 75.3 16.7 14.5 21.2 14.8 54.7 78.6 24.4 15.0 28.4 14.8 75.2 99.1 27.7 15.0 28.9 14.8 99.1
cyc 93.4 25.8 23.1 26.0 14.7 93.4 93.4 27.5 23.3 27.5 25.5 93.4 93.4 27.5 23.3 28.8 31.7 93.4
cyc_non 94.2 19.8 19.4 21.4 30.4 94.2 94.2 22.4 19.6 34.7 30.4 94.2 94.2 31.5 19.6 36.0 30.4 94.2
tri 96.4 42.6 33.3 42.7 22.1 96.4 96.4 42.7 37.9 42.7 41.5 96.4 96.4 42.7 37.9 42.7 41.5 96.4
tri_non 94.8 55.4 43.8 58.4 35.6 94.8 94.8 58.4 51.1 58.4 56.7 94.8 94.8 58.4 51.5 58.4 56.7 94.8
Average 72.6 28.1 22.5 29.7 17.9 65.5 73.9 30.1 24.3 34.3 21.0 72.7 76.9 32.6 25.0 36.5 22.3 74.0

Table 3: Coverage Results

similar to the approach in [14]) as there is no definition of
the optimal strategy. Hybrid concolic testing [35] combines
random testing and concolic testing. The idea is to start with
random testing to quickly reach a deep state of the program
by executing a large number of random test cases. When
the random testing stops improving coverage for a while,
it switches to concolic testing to exhaustively search the s-
tate space from the current program state. Garg et al. [20]
proposed to combine feedback-directed unit test generation
with concolic testing. They start with random unit testing
similar to Randoop [37] and switches to concolic testing
when the unit testing reaches a coverage plateau. A similar
idea was proposed in [49]. Compared to the above-mentioned
approaches, our method formally analyzes the effectiveness
of random testing and symbolic execution and allows us to
choose the more effective in every iteration.

This work is remotely related to work on reducing the cost
of symbolic execution and concolic testing, through methods
like pruning paths [1, 5, 10, 24, 28] and parallelism [44].

7 CONCLUSION

In this work, we propose a framework to derive optimal con-
colic testing strategies, based on which we analyze existing
heuristics and propose a new algorithm to approximate the op-
timal strategy. The evaluation on randomly generated models
and a set of real-world C programs shows that our algorithm
outperforms most existing heuristic-based algorithms often.

For future work, we would like to investigate alternative
ways of estimating probability and solving cost of program
paths. Furthermore, we would like to extend our framework
to other test case generation methods.

ACKNOWLEDGEMENT

This research was supported by Singapore Ministry of Ed-
ucation grant MOE2016-T2-2-123 and the National Basic

Research Program of China (the 973 Program) under grant
2015CB352201, NSFC Program (No. 61572426). The third
author is supported by NSFC Program (61472440, 61632015
and 61690203).

REFERENCES
[1] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-

driven compositional symbolic execution. In Tools and Algorithms
for the Construction and Analysis of Systems, 14th Interna-
tional Conference, TACAS, pages 367–381, 2008.

[2] Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. The MIT Press, 2008.

[3] Marcel Böhme and Soumya Paul. On the efficiency of automated
testing. In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering,
(FSE-22), pages 632–642, 2014.

[4] Marcel Böhme and Soumya Paul. A probabilistic analysis of the
efficiency of automated software testing. IEEE Trans. Software
Eng., 42(4):345–360, 2016.

[5] Peter Boonstoppel, Cristian Cadar, and Dawson R. Engler. Rwset:
Attacking path explosion in constraint-based test generation. In
Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS, pages 351–366, 2008.

[6] Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic
test generation. In 23rd IEEE/ACM International Conference
on Automated Software Engineering ASE, pages 443–446, 2008.

[7] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE:
unassisted and automatic generation of high-coverage tests for
complex systems programs. In 8th USENIX Symposium on
Operating Systems Design and Implementation, OSDI, pages
209–224, 2008.

[8] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill,
and Dawson R. Engler. EXE: automatically generating inputs of
death. ACM Trans. Inf. Syst. Secur., 12(2):10:1–10:38, 2008.

[9] Supratik Chakraborty, Dror Fried, Kuldeep S. Meel, and Moshe Y.
Vardi. From weighted to unweighted model counting. In Proceed-
ings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI, pages 689–695, 2015.

[10] Ting Chen, Xiaosong Zhang, Shi-ze Guo, Hong-yuan Li, and Yue
Wu. State of the art: Dynamic symbolic execution for automated
test generation. Future Generation Comp. Syst., 29(7):1758–1773,
2013.

[11] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla.
Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Trans. Program. Lang. Syst.,

ICSE ’18, May 27-June 3, 2018, Gothenburg, SwedenXinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin

8(2):244–263, 1986.
[12] Lori A. Clarke. A system to generate test data and symbolically

execute programs. IEEE Trans. Software Eng., 2(3):215–222,
1976.

[13] G Cochran. Laplace s ratio estimator. Contributions to survey
sampling and applied statistics, pages 3–10, 1978.

[14] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient
SMT solver. In Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS, pages 337–340, 2008.

[15] Matthew B. Dwyer, Antonio Filieri, Jaco Geldenhuys, Mitchell J.
Gerrard, Corina S. Pasareanu, and Willem Visser. Probabilistic
program analysis. In Grand Timely Topics in Software Engi-
neering - International Summer School GTTSE, pages 1–25,
2015.

[16] Eigen 3.3.4. Eigen Website. http://eigen.tuxfamily.org/.
[17] Dawson R. Engler and Daniel Dunbar. Under-constrained execu-

tion: making automatic code destruction easy and scalable. In
Proc. ACM/SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2007), pages 1–4. ACM, 2007.

[18] Antonio Filieri, Marcelo F. Frias, Corina S. Pasareanu, and Willem
Visser. Model counting for complex data structures. In Model
Checking Software - 22nd International Symposium, SPIN, pages
222–241, 2015.

[19] William A Gale and Geoffrey Sampson. Good-turing frequency
estimation without tears*. Journal of Quantitative Linguistics,
2(3):217–237, 1995.

[20] Pranav Garg, Franjo Ivancic, Gogul Balakrishnan, Naoto Mae-
da, and Aarti Gupta. Feedback-directed unit test generation for
C/C++ using concolic execution. In 35th International Confer-
ence on Software Engineering, ICSE, pages 132–141, 2013.

[21] Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. Prob-
abilistic symbolic execution. In International Symposium on
Software Testing and Analysis, ISSTA, pages 166–176, 2012.

[22] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: di-
rected automated random testing. In Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design
and Implementation (PLDI), pages 213–223, 2005.

[23] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Au-
tomated whitebox fuzz testing. In Proceedings of the Network
and Distributed System Security Symposium, NDSS, 2008.

[24] Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and
SaiDeep Tetali. Compositional may-must program analysis: un-
leashing the power of alternation. In Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL, pages 43–56, 2010.

[25] GSL 2.1. GNU Scientific Library (GSL). http://www.gnu.org/
software/gsl/.

[26] Richard G. Hamlet. Testing programs with finite sets of data.
Comput. J., 20(3):232–237, 1977.

[27] Ronald A. Howard. The M.I.T. Press, 1960.
[28] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A. Navas. Boost-

ing concolic testing via interpolation. In Joint Meeting of the
European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE’13, pages 48–58, 2013.

[29] Liu Jingde, Chen Zhenbang, and Wang Ji. Solving cost predic-
tion based search in symbolic execution. Journal of Computer
Research and Development, pages 1086,1094, 2016.

[30] Sun Jun. http://sav.sutd.edu.sg/research/smartconcolic.
[31] Pingfan Kong, Yi Li, Xiaohong Chen, Jun Sun, Meng Sun, and

Jingyi Wang. Towards concolic testing for hybrid systems. In FM
2016: Formal Methods - 21st International Symposium, pages
460–478, 2016.

[32] Marta Kwiatkowska, Gethin Norman, and David Parker. Pris-
m: Probabilistic symbolic model checker. In Computer perfor-
mance evaluation: modelling techniques and tools, pages 200–204.
Springer, 2002.

[33] You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. Steer-
ing symbolic execution to less traveled paths. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Objec-
t Oriented Programming Systems Languages & Applications,
OOPSLA, pages 19–32, 2013.

[34] Kasper Søe Luckow, Marko Dimjasevic, Dimitra Giannakopoulou,
Falk Howar, Malte Isberner, Temesghen Kahsai, Zvonimir Raka-
maric, and Vishwanath Raman. Jdart: A dynamic symbolic analy-
sis framework. In Tools and Algorithms for the Construction and

Analysis of Systems - 22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS, pages 442–459, 2016.

[35] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In
29th International Conference on Software Engineering (ICSE,
pages 416–426, 2007.

[36] Paul Dan Marinescu and Cristian Cadar. High-coverage symbolic
patch testing. In Model Checking Software - 19th International
Workshop, SPIN, pages 7–21, 2012.

[37] Carlos Pacheco and Michael D. Ernst. Randoop: feedback-directed
random testing for java. In Companion to the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA, pages 815–816,
2007.

[38] Sangmin Park, B. M. Mainul Hossain, Ishtiaque Hussain,
Christoph Csallner, Mark Grechanik, Kunal Taneja, Chen Fu,
and Qing Xie. Carfast: achieving higher statement coverage faster.
In 20th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC,
USA - November 11 - 16, 2012, page 35, 2012.

[39] Minghui Quan. Hotspot symbolic execution of floating-point pro-
grams. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE, pages
1112–1114, 2016.

[40] Anthony Romano. Practical floating-point tests with integer
code. In Proc. International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2014, pages
337–356. Springer, 2014.

[41] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic
unit testing engine for C. In Proceedings of the 10th European
Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, pages 263–272, 2005.

[42] Hyunmin Seo and Sunghun Kim. How we get there: a context-
guided search strategy in concolic testing. In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, (FSE-22), pages 413–424, 2014.

[43] SoftFloat 2b. Berkeley SoftFloat. http://www.jhauser.us/
arithmetic/SoftFloat.html.

[44] Matt Staats and Corina S. Pasareanu. Parallel symbolic execution
for structural test generation. In Proceedings of the Nineteenth
International Symposium on Software Testing and Analysis,
ISSTA, pages 183–194, 2010.

[45] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutch-
er, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christo-
pher Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing
through selective symbolic execution. In 23rd Annual Network
and Distributed System Security Symposium, NDSS, 2016.

[46] Deian Tabakov and Moshe Y. Vardi. Experimental evaluation
of classical automata constructions. In Logic for Programming,
Artificial Intelligence, and Reasoning, 12th International Con-
ference, LPAR, pages 396–411, 2005.

[47] Nikolai Tillmann and Jonathan de Halleux. Pex-white box test
generation for .net. In Tests and Proofs, Second International
Conference, TAP, pages 134–153, 2008.

[48] Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram
Schulte. Fitness-guided path exploration in dynamic symbolic
execution. In Proceedings of the 2009 IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN, pages
359–368, 2009.

[49] Chaoqiang Zhang, Alex Groce, and Mohammad Amin Alipour.
Using test case reduction and prioritization to improve symbolic
execution. In International Symposium on Software Testing and
Analysis, ISSTA, pages 160–170, 2014.

http://eigen.tuxfamily.org/
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html

	Abstract
	1 Introduction
	2 Problem Definition
	3 Optimal Strategy
	3.1 Markov Chain Abstraction
	3.2 Optimal Strategy
	3.3 Evaluating Existing Heuristics

	4 Approximating Optimality
	4.1 Estimating MaP and Function cost
	4.2 A Greedy Algorithm

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

