Towards
Optimal
Concolic
Testing

Zhejiang University
Singapore U. Technology and
Design
National U. Defence
Technology
National U. Singapore

Example

void myfunc (int x, int y) {

1.
2.

W

Nowu

N~

i (x==y) {
X++;
}

if ((x*x)%10==9) {
return;
}

if (x*y+3*y-5*x==15) {
if (x%2==1 lly%2==1) {
X = X-Y;
}
}
return;

How to generate test cases to cover
all statements?

4 3
(x*x)%10==9
(x*x)%10!=9

x*y+3y-5x1=15
8

x*y+3y-5x==15

6
x%2==1|y%2!=1
x%2==1||y%2==1

7

The Testing Problem

Option 1: Random testing 1 2

X::
“Cheap” at covering high-probability X++

program paths.

x!=y

4 3
x*X)%10==9 * —
“Expensive” at covering low-probability oy (x*x)%10!=9

program paths. 8X*y+3Y-5X!=15 =

x*y+3y-5x==15

6
x%2==1|ly%2!=1
x%2==1||y%2==1

hard to cover 7

easy to cover

The Testing Problem

Option 2: Symbolic Execution

1 2
X==y x!=
Relatively expensive. X++
. e 4 3
Very expensive if the path condition is (X*X)%10==9
complicated. (x*x)%10!=9

x*y+3y-5x1=15
8 5

x*y+3y-5x==15

6
x%2==1|ly%2!=1
x%2==1||y%2==1

hard to cover 7

easy to cover

LONCOIIC | esting = SYMpoIIC +
Random Testing

There are different strategies on combining

symbolic testing and random testing. 1 - 2
- x!=y
Some are “better”, e.g. X
4 3
® Solve path <1, 2> and path <1,3,5,6> (X*x)%10==9 (X*X)%101=9
® Apply random testing to cover the

*y+3y-5x1=15
rest. 8X y 3y X 5

x*y+3y-5x==15

6
x%2==1|ly%21=1" _ o
How should we combine symbolic testing and X%02==1|ly%2==1

random testing? .

Existing Heuristics

Depth-first search (PLDI'OS) These are all heuristics. Can we
_ _ , define what is the optimal strategy
Generational searching (CACM’12) and propose better algorithms?

Control-flow Directed Strategy (ASE’08)
Steering Symbolic Execution to Less Traveled Paths (OOPSLA’13)

Random branch search (OSDI'07)

Automatically Generating Search Heuristics for Concolic Testing (ICSE’18)

Understanding Random Testing

1 2 1 2
X==y xl=y 1/(2"32) 1-1/(2432)
X++ 1
4 3 4 3
(X*X)%10==9 1/5
(X*X)%10!=9 4/5
x*y+3y-5x1=15 1-1/(2"32)
8 5 8 5
x*y+3y-5x==15 1/(2432)
6 6
x%2==1||y%2!=1 0
x%2==1||y%2==1 1

7 7

Understanding Random Testing

The effectiveness of random testing on
covering a node depends on the probability

A
of reaching the node. 12 312) 1-1/(2"32)
Example: 4 3
1o 4/5
The probability of covering node 4 is 1/5
. 1-1/(2132)
which means on average 5 random test 8 5
cases are needed to cover it. 1/(2732)
6
0

1

Cost of Symbolic Execution

To measure the effectiveness of symbolic
execution, we need to know the relative cost of
symbolic execution.

Example
Generate a random test: cost 1 time unit.

Symbolically execute path <1,3>: cost 5 time
units.

Symbolically execute path <1,3,5,6>: cost 50
time units.

1 2
X::y

X++

x!=y

4 3
(X*x)%10==9
(x*x)%10!=9

x*y+3y-5x1=15
8 5

x*y+3y-5x==15

6
x%2==1|y%2!=1
x%2==1||y%2==1

7

Let’s Get Formal

The problem

A concolic testing strategy is a sequence of
test case generation method <t1, t2,

t3, ...>, each of which could be either
random testing or applying symbolic
execution to a certain program path.

Find an optimal strategy achieves maximum
coverage and cost(t1) + cost(t2) + cost(t3)
+ ... IS minimum.

The solution

The problem is reduced to a model checking
problem of Markov Decision Processes with
Costs.

If we know the program probability and the
cost of symbolic execution (of each
program path), the problem can be
perfectly solved by model checking.

HOW LOO0QO Are EXIStiNg
Heuristics?

Experiment Setting

Randomly generated DTMC models 5 states 10 states 15 states 20 states

representing abstraction of Optimal 1 1 1 1
programs. RT 138.9 11.3 44.2 114.7
RCN 1.7 14.4 15.1 2.7
Randomly generated costs EESS g: 28-2 2;18 22;
representing the cost of symbolic ' ' ' '
P . fg h h y DFS 7.1 27.4 21.8 18.6
execution for each path. DART 1.8 13.0 12.8 13.0
GS 1.9 13.5 13.9 13.3
CGS 1.8 12.6 13.6 13.8
Existing approaches have a lot of SGS 11.2 32.4 29.4 25.5

room to improve!

Let’s Get Practical

The Example:

4 3
(X*x)%10==9
(x*x)%10!=9

x*y+3y-5x1=15
8 5

x*y+3y-5x==15

6
x%2==1|y%2!=1
x%2==1||y%2==1

7

1/2
1/2

1/2

Initial Estimation

1/2

1/2

1/2

1/2

An Example

Assume the random test case covers 1, 3, 5 and 8.

1 2
1/3 1 2/3 Apply Laplace estimation to update the DTMC.
4 3 Compute the reward of random testing by solving
1/3 /3 the following equation system:
2/3 R =1/3*R + 2/3*B
8 5 R =R
1/3 B=1/3*R + 2/3*B®
5 R=1
1/2 B=2/3*"B+1/3*B
1/2 B=1+1/2*B +1/2*R o
1 R=1+R gc;llin?-nhz = 5/3;
7 B=0 ; ’

R4=1; R6 = 3/2

An Example

Compute the reward of applying symbolic

1 ion:
13 2 o/ execution:
1 Solving path <1, 2>: cost 4, reward 5/3
4 3 Solving path <1, 3, 4>: cost 50, reward 1
1/3 o3 Solving path <1, 3, 5, 6>: cost 50, reward 3/2

5 2/3 . Random testing: cost 1, reward 1

1/3 Thus, random testing.

6

1/2

1/2

An Example

1 2
1
4
1/10
9/10
9/10
8 5
110
6
1/2
1/2
1
7

After 8 random test case, assuming all of them visit
<1,3,5,8>, the DTMC is updated as shown on the
left.

Random testing: cost 1, reward 0.24
Symbolic Execution on <1,2>: cost 4, reward 1.14
Symbolic Execution on <1,3,4>: cost 50, reward 1

Symbolic Execution on <1,3,4,6>: cost 50, reward
3/2

Thus, symbolic Execution on <1,2>.

repeat until we cover all
reachable nodes or timeout.

Evaluation

Experiment 1

5 states 10 states 15 states 20 states

Randomly generated DTMC models

Optimal 1 i 1 1
representing abstraction of programs. RT 138.9 11.3 44.9 114.7
RCN i 14.4 15.1 127
Randomly generated costs representing the Rss 12.8 50.7 64.0 B2
cost of symbolic execution for each path. RPS 12.8 50.6 63.9 68.5
DFS il 27.4 21.8 18.6
DART 1.8 13.0 12.8 13.0
GS 1.9 13.5 13.9 13.3
CGS 1.8 12.6 13.6 13.8
SGS Vil2 32.4 29.4 25.5

G 2 | 4.8 el 4.8

Implementation and Evaluation

Experiment 2
We extend KLEE with our strategy.

We use a set of scientific program as test
subjects.

We measure the coverage achieved by
different strategies over time.

Average coverage

120

100 r

80 r

60

40

20

=R . R

| O B B |

5 10

15

30

Conclusion

We define and solve the problem of concolic testing.

We propose a practical algorithm.

There is room to improve.

