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Individual Discrimination

Given x ={x,X,,...,X,} where X, is the value of attribute A, in its

domain [, and protected attributes P C A. Say that x is an
individual discriminatory instance (IDI) of a model D if:

 Jp € P, s.t,, X, # X
* Vq€ENP,x, =X,
* D(x) z D(x') Testing: how can we effectively and
efficiently generate IDIs for a given

model with potential bias?
T

p

Example:“Being male is vile.” versus “Being female is vile.”



Existing Heuristics

* THEMIS (FSE'17)

* Random without any guide.

* AEQUITAS (ASE'18)

* Two of three local methods are guided. Can we propose a better
* Guide is not input specific. algorithm specifically for
deep learning models?
— <

* Symbolic Generation (FSE'19)

* Combine model explanation and symbolic execution.
* Heavyweight.



Intuition
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Adversarial Attack.

@original input Oinvalid search @ found discrimination

Fairness Testing.




Adversarial Discrimination Finder (ADF)
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Global

Problem 1: How to improve the
diversity of the testing data?

—

Problem 2: How do we perturb the data?

Through clustering.

Based on the sign of

7/ gradients.

Problem 3: How do we filter out the
unreal data?

Clip each attribute within
its domain.




| ocal

Problem 1: How do we choose the
attribute for local perturbation?

— =

Based on the absolute
value of gradients.

Problem 2: How do we filter out the
unreal data?

Clip each attribute with its
domain.




A Qualitative Comparison

* Our algorithm is guided by gradient, which accelerates the discovery
of more individual discriminatory instances.

* Our algorithm is input sepecific, which improves the diversity of IDlIs.

* Our algorithm is lightweight, which makes it more scalable.

Feature THEMIS | AEQUITAS | SG | ADF
Guided X v (semi) v V4
Input specific N.A. X v v
Lightweight v v X v




Evaluation

* Benchmark (tabular) * Research Questions
* Census Income: age, race, gender * RQr: How eftective is ADF in
finding individual discriminatory

* German Credit: age, gender
* Bank Marketing: bank

Instance?

* RQ2: How efficient is ADF in
. finding individual discriminatory
Model instances?
* Six-layer Fully-connected NN

* RQ3: How useful are the identified
individual discriminatory instances
for improving the fairness?



Evaluation
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Evaluation

Time taken to generate 1000
individual discriminatory instances.

Dataset | Protected Attr. | AEQUITAS SG ADF
census age 172.64 720.49 | 59.15
census race 128.75 Ho.33 | HaHa
census gender 158.37 2128.42 | 78.68

bank age 191.16 521.79 | 106.93
credit age 176.31 321.63 | 64.92
credit gender 156.22 476.52 | 102.90

Answer to RQ2: Our algorithm ADF is more efficient than state-of-
the-art methods.




Evaluation

Fairness improvement.

Dataset | Prot. Attr. | Before (%) ADF Aggfa%i ST SG
census age 10.88 2.26 4.03 2.41
census race 9.75 6.15 7.05 6.89
census gender 3.14 1.65 2.33 1.90
bank age 4.60 1.19 1.68 2.04
credit age 27.93 12.05 13.91 13.19
credit gender 7.68 3.93 4.58 4.66
Answer to RQ3: The IDIs generated by ADF are useful to improve the

fairness of the DNN through retraining.



Conclusion

* We propose a lightweight algorithm to eftectively and efficiently
generate individual discriminatory instances for deep neural
network through adversarial sampling.

* ADF will be expanded beyond structured (tabular) data, e.g., text,
image.



Thanks and questions?



