White–box Fairness Testing through Adversarial Sampling

Peixin Zhang^{1,3}, Jingyi Wang^{1,2*}, Jun Sun³, Guoliang Dong^{1,3}, Xinyu Wang^{1*}, Xingen Wang¹, Jinsong Dong², Ting Dai⁴

> ¹Zhejiang University ²National University of Singapore ³Singapore Management University ⁴Huawei International Pte Ltd 2020.07.07

Why Fairness

I CAN'T Breathe

THE NATIONAL ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT STRATEGIC PLAN: 2019 UPDATE

> A Report by the SELECT COMMITTEE ON ARTIFICIAL INTELLIGENCE of the NATIONAL SCIENCE & TECHNOLOGY COUNCIL

> > JUNE 2019

Individual Discrimination

Given $x = \{x_1, x_2, ..., x_n\}$ where x_i is the value of attribute A_i in its domain I_i , and protected attributes $P \subset A$. Say that x is an *individual discriminatory instance (IDI)* of a model D if:

- $\exists p \in P$, s.t., $x_p \neq x'_p$
- $\forall q \in NP$, $\mathbf{x}_q = \mathbf{x'}_q$
- $D(x) \neq D(x')$

Testing: how can we effectively and efficiently generate IDIs for a given model with potential bias?

Example:"Being male is vile." versus "Being female is vile."

Existing Heuristics

- THEMIS (FSE'17)
 - Random without any guide.
- AEQUITAS (ASE'18)
 - Two of three local methods are guided.
 - Guide is not input specific.

Can we propose a better algorithm specifically for deep learning models?

• Symbolic Generation (FSE'19)

- Combine model explanation and symbolic execution.
- Heavyweight.

Intuition

● original input ○ invalid search ● found adversary

Adversarial Attack.

original input O invalid search

Fairness Testing.

Adversarial Discrimination Finder (ADF)

Global

Local

A Qualitative Comparison

- Our algorithm is **guided by gradient**, which accelerates the discovery of more individual discriminatory instances.
- Our algorithm is **input sepecific**, which improves the diversity of IDIs.
- Our algorithm is **lightweight**, which makes it more scalable.

Feature	THEMIS	AEQUITAS	SG	ADF
Guided	X	√(semi)	\checkmark	\checkmark
Input specific	N.A.	×	\checkmark	\checkmark
Lightweight	\checkmark	\checkmark	X	\checkmark

• Benchmark (tabular)

- Census Income: age, race, gender
- German Credit: age, gender
- Bank Marketing: bank
- Model
 - Six-layer Fully-connected NN

- Research Questions
 - RQI: How effective is ADF in finding individual discriminatory instance?
 - RQ2: How efficient is ADF in finding individual discriminatory instances?
 - RQ3: How useful are the identified individual discriminatory instances for improving the fairness?

Number of IDIs generated by global generation.

Number of IDIs generated by local generation.

Answer to RQI: Our algorithm ADF is more effective than state-ofthe-art methods.

Time taken to generate 1000 individual discriminatory instances.

Dataset	Protected Attr.	AEQUITAS	SG	ADF
census	age	172.64	720.49	59.15
census	race	128.75	506.33	65.95
census	gender	158.37	2128.42	78.68
bank	age	191.16	521.79	106.93
credit	age	176.31	321.63	64.92
credit	gender	156.22	476.52	102.90

Answer to RQ2: Our algorithm ADF is more efficient than state-ofthe-art methods.

Fairness improvement.

Dataset	Prot. Attr.	Before (%)	After (%)		
			ADF	AEQUITAS	SG
census	age	10.88	2.26	4.03	2.41
census	race	9.75	6.15	7.05	6.89
census	gender	3.14	1.65	2.33	1.90
bank	age	4.60	1.19	1.68	2.04
credit	age	27.93	12.05	13.91	13.19
credit	gender	7.68	3.93	4.58	4.66

Answer to RQ3: The IDIs generated by ADF are useful to improve the fairness of the DNN through retraining.

Conclusion

- We propose a lightweight algorithm to effectively and efficiently generate individual discriminatory instances for deep neural network through adversarial sampling.
- ADF will be expanded beyond structured (tabular) data, e.g., text, image.

Thanks and questions?